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Abstract 

This book presents an in-depth description of main data analysis methods: 1D 
summarization, 2D analysis, popular classifiers such as naïve Bayes and linear 
discriminant analysis, regression and neuron nets, Principal component analysis 
and its derivates, K-Means clustering and its extensions, hierarchical clustering, 
and network clustering including additive and spectral methods. These are sys-
tematized based on the idea that data analysis is to help enhance concepts and rela-
tions between them in the knowledge of the domain. Modern approaches of evolu-
tionary optimization and computational validation are utilized. Various relations 
between criteria and methods are formulated as those underlain by data-driven 
least-squares frameworks invoked for most of them. The description is organized 
in three interrelated streams: presentation, formulation and computation, so that 
the presentation part can be read and studied by students with little mathematical 
background. A number of self-study tools – worked examples, case studies, pro-
jects and questions – are provided to help the reader in mastering the material. 
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Preface 
 
This is a textbook in data analysis. Its contents are heavily influenced by the 

idea that data analysis should help in enhancing and augmenting knowledge of the 
domain as represented by the concepts and statements of relation between them. 
According to this view, two main pathways for data analysis are summarization, 
for developing and augmenting concepts, and correlation, for enhancing and estab-
lishing relations. Visualization, in this context, is a way of presenting results in a 
cognitively comfortable way. The term summarization is understood quite broadly 
here to embrace not only simple summaries like totals and means, but also more 
complex summaries such as the principal components of a set of features or clus-
ter structures in a set of entities.  

 
The material presented in this perspective makes a unique mix of subjects from 

the fields of statistical data analysis, data mining, and computational intelligence, 
which follow different systems of presentation.  

 
Another feature of the text is that its main thrust is to give an in-depth under-

standing of a few basic techniques rather than to cover a broad spectrum of ap-
proaches developed so far. Most of the described methods fall under the same 
least-squares paradigm for mapping an “idealized” structure to the data. This al-
lows me to bring forward a number of relations between methods that are usually 
overlooked. Just one example: a relation between the choice of a scoring function 
for classification trees and normalization options for dummies representing the 
target categories. 

 
Although the in-depth study approach involves a great deal of technical details, 

these are encapsulated in specific fragments of the text termed “formulation” 
parts. The main, “presentation”, part is written in a very different style. The pres-
entation involves no mathematical formulas and explains a method by actually ap-
plying it to a small real-world dataset – this part can be read and studied with no 
concern for the formulation at all. There is one more part, “computation”, targeted 
at a computer-oriented reader. This part describes the computational implementa-
tion of the methods, illustrated using the MatLab computing environment. I have 
arrived at this three-way narrative style as a result of my experiences in teaching 
data analysis and computational intelligence to students in Computer Science. 
Some students might be mainly interested in just one of the parts, whereas others 
might try to get to grips with two or even all three of them. 

 
One more device to stimulate the reader’s interest is a multi-layer system of 

pro-active learning materials for class- and self-study: 
 
- Worked examples provided to show how specific methods apply to par-

ticular datasets;  
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- More complex problems solved, case studies, possibly involving a rule 
for data generation, rather than a pre-specified dataset, or an informal 
way of analyzing results;     

- Even more complex problems, projects, possibly involving uncharted 
terrain and a small-scale investigation; 

- A number of computational or theoretical problems, questions, formu-
lated as self-study exercises; answers are provided for most of them. 

 
The text is based on my courses for full-time and part-time students in the MS 

program in Computer Science at Birkbeck, University of London (2003-2010), in 
the BS and MS programs in Applied Mathematics and Informatics at Higher 
School of Economics, Moscow (2008-2010), and post-graduate School of Data 
Analysis at Yandex, a popular Russian search engine, Moscow (2009-2010). The 
material covers lectures and labs for about 35-40 lecture hours in advanced BS 
programs or MS programs in Computer Science or Engineering. It can also be 
used in application-oriented courses such as Bioinformatics or Methods in Market-
ing Research.  

 
No prerequisite beyond a conventional school background for reading through 

the presentation part is required, yet some training in reading academic material is 
expected. The reader interested in studying the formulation part should have some 
background in: (a) basic calculus including the concepts of function, derivative 
and the first-order optimality conditions, (b) basic linear algebra including vectors, 
inner products, Euclidean distances and matrices (these are reviewed in the Ap-
pendix), and (c) basic set theory notation such as the symbols for inclusion and 
membership. The computation part is oriented towards those interested in coding 
for computer implementation, specifically focusing on working with MatLab as a 
user-friendly environment. 
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0  Introduction: What Is Core 

Boris Mirkin 

Department of Computer Science and Information Systems, Birkbeck, University of London, 
Malet Street, London WC1E 7HX UK 

Department of Data Analysis and Machine Intelligence, Higher School of Economics, 11 
Pokrovski Boulevard, Moscow RF  

Abstract    

This is an introductory chapter in which  

(i) Goals of data analysis as a tool helping to enhance and augment 
knowledge of the domain are outlined. Since knowledge is represented 
by the concepts and statements of relation between them, two main 
pathways for data analysis are summarization, for developing and 
augmenting concepts, and correlation, for enhancing and establishing 
relations. 

(ii) A set of seven cases involving small datasets and related data analysis 
problems is presented. The datasets are taken from various fields such 
as monitoring market towns, computer security protocols, bioinfor-
matics, cognitive psychology. 

(iii) An overview of data visualization, its goals and some techniques is 
given. 
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0.1 Summarization and correlation: two main goals of Data 
Analysis 

 
The term Data Analysis has been used for quite a while, even before the advent of 
computer era, as an extension of mathematical statistics, starting from develop-
ments in cluster analysis and other multivariate techniques before WWII and 
eventually bringing forth the concepts of “exploratory” data analysis and “confir-
matory” data analysis in statistics (see, for example, Tukey 1977). The former was 
supposed to cover a set of techniques for finding patterns in data, and the latter to 
cover more conventional mathematical statistics approaches for hypotheses test-
ing.  “A possible definition of data analysis is the process of computing various 
summaries and derived values from the given collection of data” and, moreover, 
the process may become more intelligent if attempts are made to automate some 
of the reasoning of skilled data analysts and/or to utilize approaches developed in 
the Artificial Intelligence areas (Berthold and Hand 2003, p. 3). Overall, the term 
Data Analysis usually applies as an umbrella to cover all the various activities 
mentioned above, with an emphasis on mathematical statistics and its extensions. 

 
The situation can be looked at as follows. The classical statistics takes the view 

of the data as a vehicle to fit and test mathematical models of the phenomena the 
data refer to. The data mining and knowledge discovery discipline uses data to add 
new knowledge in any format.  It should be sensible then to look at those methods 
that relate to an intermediate level and contribute to the theoretical – rather than 
any – knowledge of the phenomenon.  These would focus on ways of augmenting 
or enhancing theoretical knowledge of the specific domain which the data being 
analyzed refer to. The term “knowledge” encompasses many a diverse layer or 
form of information, starting from individual facts to those of literary characters to 
major scientific laws. But when focusing on a particular domain the dataset in 
question comes from, its “theoretical” knowledge structure can be considered as 
comprised of just two types of elements: (i) concepts and (ii) statements relating 
them. Concepts are aggregations of similar entities, such as apples or plums, or 
similar categories such as fruit comprising both apples and plums, among others. 
When created over data objects or features, these are referred to, in data analysis, 
as clusters or factors, respectively. Statements of relation between concepts ex-
press regularities relating different categories. Two features are said to correlate 
when a co-occurrence of specific patterns in their values is observed as, for in-
stance, when a feature’s value tends to be the square of the other feature. The ob-
servance of a correlation pattern can lead sometimes to investigation of a broader 
structure behind the pattern, which may further lead to finding or developing a 
theoretical framework for the phenomenon in question from which the correlation 
follows. It is useful to distinguish between quantitative correlations such as func-
tional dependencies between features and categorical ones expressed conceptually, 
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for example, as logical production rules or more complex structures such as deci-
sion trees. Correlations may be used for both understanding and prediction. In ap-
plications, the latter is by far more important. Moreover, the prediction problem is 
much easier to make sense of operationally so that the sciences so far have paid 
much attention to this. 

 
What is said above suggests that there are two main pathways for augmenting 

knowledge:  (i) developing new concepts by “summarizing” data and (ii) deriving 
new relations between concepts by analyzing “correlation” between various as-
pects of the data. The quotation marks are used here to point out that each of the 
terms, summarization and correlation, much extends its conventional meaning. In-
deed, while everybody would agree that the average mark does summarize the 
marking scores on test papers, it would be more daring to see in the same light 
derivation of students’ hidden talent scores by approximating their test marks on 
various subjects or finding a cluster of similarly performing students. Still, the 
mathematical structures behind each of these three activities – calculating the av-
erage, finding a hidden factor, and designing a cluster structure – are analogous, 
which suggests that classing them all under the “summarization” umbrella may be 
reasonable. Similarly, term “correlation” which is conventionally utilized in statis-
tics to only express the extent of linear relationship between two or more vari-
ables, is understood here in its generic sense, as a supposed affinity between two 
or more aspects of the same data that can be variously expressed, not necessarily 
by a linear equation or by a quantitative expression at all.  

 
It would be useful to spell out that view of the data as a subject of computa-

tional data analysis that is adhered to here. Typically, in sciences and in statistics, 
a problem comes first, and then the investigator turns to data that might be useful 
in advancing towards a solution. In computational data analysis, it may also be the 
case sometimes. Yet sometimes the situation is reversed. Typical questions then 
would be: Take a look at this data set - what sense can be made out of it? – Is there 
any structure in the data set? Can these features help in predicting those? This is 
more reminiscent to a traveler’s view of the world rather than that of a scientist. 
The scientist sits at his desk, gets reproducible signals from the universe and tries 
to accommodate them into the great model of the universe that the science has 
been developing. The traveler deals with what comes on their way.  Helping the 
traveler in making sense of data is the task of data analysis. It should be pointed 
out that this view much differs of the conventional scientific method in which the 
main goal is to identify a pre-specified model of the world, and data is but a vehi-
cle in achieving this goal. It is that view that underlies the development of data 
mining, though the aspect of data being available as a database, quite important in 
data mining, is rather tangential to data analysis. 

 
Any data set comprises two parts, data and metadata entries. Data are the set of 

measurements taken, whereas metadata is a most straightforward relation between 
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knowledge and measurements. Metadata usually involves names for the entities 
and features as well as indications of the measurement scales for the latter. De-
pending on the data domain, entities may be alternatively but synonymously re-
ferred to as individuals, objects, cases, instances, patterns, or observations. Data 
features may be synonymously referred to as variables, attributes, states, or char-
acters. Depending on the way they are assigned to entities, the features can be of 
elementary structure [e.g., age, sex, or income of individuals] or complex structure 
[e.g., an image, or a statement, or a cardiogram]. Metadata may involve relations 
between entities and other relevant information. 

 
The two-fold goal clearly delineates the place of the data analysis core within 

the set of approaches involving various data analysis tasks. Here is a list of some 
popular approaches: 

• Classification – this term applies to denote either a meta-scientific area 
of organizing the knowledge of a phenomenon into a set of separate 
classes  to structure the phenomenon and relate different aspects of it to 
each other, or a discipline of supervised classification, that is, developing 
rules for assigning class labels to a set of entities under consideration. 
Data analysis can be utilized as a tool for designing the former, whereas 
the latter can be thought of as a problem in data analysis. 

• Cluster analysis – is a discipline for obtaining (sets of ) separate subsets 
of similar entities or features or both from the data, one of the most ge-
neric activities in data analysis. 

• Computational intelligence – a discipline utilizing fuzzy sets, nature-
inspired algorithms, neural nets and the like to computationally imitate 
human intelligence, which does overlap other areas of data analysis. 

• Data mining – a discipline for finding interesting patterns in data stored 
in databases, which is considered part of the process of knowledge dis-
covery. This has a significant overlap with computational data analysis, 
though structured somewhat differently by putting more emphasis on fast 
computations in large data bases and finding “interesting” associations 
and patterns. 

• Document retrieval – a discipline developing algorithms and criteria for 
query-based retrieval of as many relevant documents as possible, from a 
document base, which is similar to establishing a classification rule in 
data analysis. This area has become most popular with the development 
of search engines over the internet. 

• Factor analysis – a discipline emerged in psychology for modeling and 
finding hidden factors in data, which can be considered part of quantita-
tive summarization in data analysis. 

• Genetic algorithms – an approach to globally search through the solu-
tion space in complex optimization problems by representing solutions as 
a population of “genomes” that evolves in iterations by mimicking micro-
evolutionary events such as “cross-over” and “mutation”. This can play a 
role in solving optimization problems in data analysis. 
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• Knowledge discovery – a set of techniques for deriving quantitative 
formulas and categorical productions to associate different features and 
feature sets, which hugely overlaps with the corresponding parts of data 
analysis.   

• Mathematical statistics – a discipline of data analysis based on the as-
sumption of a probabilistic model underlying the data generation and/or 
decision making so that data or decision results are used for fitting or 
testing the models. This obviously has a lot to do with data analysis, in-
cluding the idea that an adequate mathematical model is a finest knowl-
edge format. 

• Machine learning – a discipline in data analysis oriented at producing 
classification rules for predicting unknown class labels at entities usually 
arriving in a random sequence. 

• Neural networks – a technique for modeling relations between (sets of) 
features utilizing structures of interconnected artificial neurons; the pa-
rameters of a neural network are learned from the data. 

• Nature-inspired algorithms – a set of contemporary techniques for op-
timization of complex functions such as the squared error of a data fitting 
model, using a population of admissible solutions evolving in iterations 
mimicking a natural process such as genetic recombination and ant col-
ony  or particle swarm search for foods.   

• Optimization – a discipline for analyzing and solving problems in find-
ing optima of a function such as the difference between observed values 
and those produced by a model whose parameters are being fitted (error).  

• Pattern recognition – a discipline for deriving classification rules (su-
pervised learning) and clusters (unsupervised learning) from observed 
data. 

• Social statistics – a discipline for measuring social and economic in-
dexes using observation or sampling techniques. 

• Text analysis – a set of techniques and approaches for the analysis of un-
structured text documents such as establishing similarity between texts, 
text categorization, deriving synopses and abstracts, etc.  

 
The text describes methods for enhancing knowledge by finding in data either  

(a) Correlation among features (Cor) or 
(b) Summarization of entities or features (Sum),  

in either of two ways, quantitative (Q) or categorical (C). Combining these two 
bases makes four major groups of methods: CorQ, CorC, SumQ, and SumC that 
form the core of data analysis. It should be pointed out that currently different 
categorizations of tasks related to data analysis prevail, one coming from the clas-
sical mathematical statistics with its bias towards mathematically treatable models 
(see, for example, Hair et al. 2010), and the other from machine learning and data 
mining –  that expressed by the popular account by Duda and Hart (2001) – a sys-
tem concentrating on the problem of learning categories of objects, thus leaving 
outside such important problems as quantitative summarization. 
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A correlation or summarization problem typically involves the following five in-
gredients: 

• Stock of mathematical structures sought in data 
• Computational model relating the data and the mathematical structure 
• Criterion to score the match between the data and structure (fitting crite-

rion) 
• Method for optimizing the criterion 
• Visualization of the results. 

 
Here is a brief outline of those described in this text: 

 
Mathematical structures: 

- linear combination of features; 
- neural network mapping a set of input features into a set of target features; 
- decision tree built over a set of features; 
- cluster of entities; 
- partition of the entity set into a number of non-overlapping clusters. 
  

When the type of mathematical structure to be used has been chosen, its parame-
ters are to be learnt from the data.   

 
A fitting method relies on a computational model involving a function scoring 
the adequacy of the mathematical structure underlying the rule – a criterion, and, 
usually, visualization aids. The data visualization is a way to represent the found 
structure to human eye. In this capacity, it is an indispensible part of the data 
analysis, which explains why this term is raised into the title. We briefly outline 
some aspects of visualization within the data analysis approach in section 0.3.  

 
The criterion measures either the deviation from the target (to be minimized) or 
goodness of fit to the target (to be maximized).  

 
Currently available computational methods to optimize the criterion encompass 
three major groups: 

- global optimization, that is, finding the best possible solution, computation-
ally feasible sometimes for linear quantitative and simple discrete structures;  

- local improvement using such general approaches as: 
• gradient ascent and descent  
• alternating optimization 
• greedy neighborhood search (hill climbing) 

- nature-inspired approaches involving a population of admissible solutions 
and its iterative evolution, an approach involving relatively recent advancements 
in computing capabilities, of which the following will be used in some problems:    

• genetic algorithms 
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• evolutionary algorithms 
• particle swarm optimization 

 
It should be pointed out that currently there is no systematic description of all pos-
sible combinations of problems, data types, mathematical structures, criteria, and 
fitting methods available. Here we rather focus on the generic and better explored 
problems in each of the four data analysis groups that can be safely claimed as be-
ing prototypical within the groups: 

 
Quant  Principal component analysis 

             Sum 
   Categ  Cluster analysis 
 
   Quant  Regression analysis 

    Cor 
   Categ  Supervised classification 
      

The four approaches on the right have emerged in different frameworks and usu-
ally are considered as unrelated. However, they are related in the context of data 
analysis. Moreover, they can be unified by the so-called data-driven modeling to-
gether with the least-squares criterion that will be adopted for all main methods 
described in this text. In fact, the criterion is part of a unifying data-recovery per-
spective that has been developed in mathematical statistics for fitting probabilistic 
models and then was extended to data analysis. In data analysis, this perspective is 
useful not only for supplying a nice fitting criterion but also because it involves 
the decomposition of the data scatter into “explained” and “unexplained” parts in 
all four methods. The data recovery approach  takes in a type of mathematical 
structure to model the data and proceeds in three stages:  

(1) fitting a model representing the structure to the data (this can be referred to 
as “coding”),  

(2) deriving data from the model in the format of the data used to build the 
model (this can be referred to as “decoding”), and  

(3) looking at the discrepancies between the observed data and those recovered 
from the model. The smaller are the discrepancies, the better the fit – this is a 
principle underlying the data-driven modeling approach.  

 
Using the data recovery approach provided me with tools to develop and de-

scribe a number of innovative relations bringing together popular concepts con-
ventionally considered as being worlds apart (Mirkin 1996, 2005). Among them: 

(a) Reinterpretation and visualization of Pearson chi-square contingency coef-
ficient as a summary association index rather than a statistical independence crite-
rion;  
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(b) Use of anomalous patterns, an extension of principal component analysis to 
clustering, for both initializing K-Means and setting the number of clusters;  

(c) A multitude of different reformulations of the square-error clustering crite-
rion potentially leading to different clustering strategies;  

(d) Interrelation between association measures utilized for building decision 
trees and normalization of dummies representing categorical data, and  

(e) A unified framework for network clustering including:  
(i) a number of combinatorial clustering criteria,  
(ii) spectral clustering, a recent very popular approach,   
(iii) additive clustering, a less popular yet powerful paradigm.    

 
There can be distinguished at least three different levels of studying a computa-

tional data analysis method. A reader can be interested in learning of the approach 
on the level of concepts only – what a concept is for, why it should be applied at 
all, etc. A somewhat more practically oriented tackle would be of an information 
system/tool that can be utilized without any knowledge beyond the structure of its 
input and output. A more technically oriented way would be studying the method 
involved and its properties. Comparable advantages (pro) and disadvantages (con-
tra) of these three levels can be stated as follows. 

 
  Pro   Con 
 
Concepts Awareness  Superficial 
 
Systems Usable now  Short-term 
  Simple   Stupid 
 
Techniques Workable  Technical 
  Extendable  Boring 

 
Many in Computer Sciences rely on the Systems approach assuming that good 

methods have been developed and put in there already. Although it is largely true 
for well defined mathematical problems, the situation is by far different in data 
analysis because there are no well posed problems here – basic formulations are 
intuitive and rarely supported by sound theoretical results. This is why, in many 
aspects, intelligence of currently popular “intelligent methods” may be rather su-
perficial potentially leading to wrong results and decisions.  

 
Consider, for instance, a very popular concept, the power law – many say that in uncon-
strained social processes, such as those on the Web networks, this law, expressed with for-
mula y=ax-b where x and y are some features and a and b are constant coefficients, domi-
nates. Here are a few examples: the decay in the numbers of people who read a news story 
on the web over time time; the distribution of page requests on a web-site according to their 
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popularity; the distribution of website connections, etc. According to a very popular recipe, 
to fit a power law (that is, to estimate a and b from the data), one needs to fit the logarithm 
of the power-law equation, that is, log(y)=c-b*log(x) where c=log(a), which is much easier 
to fit because it is linear. Therefore, this recipe advises: take logarithms of the x and y first 
and then use any popular linear regression program to find the constants. The recipe works 
well when the regularity is observed with no noise, which cannot be in real world social 
processes. With the real-world noise, this recipe may lead to big errors. For example, if x is 
generated between 0-10 and y is related to x by the power law y=2*x1.07, which can be in-
terpreted as the growth with the rate of approximately 7% per time unit, with an added 
Gaussian noise N(0,2) of the zero mean and the standard deviation equal to 2, the recipe 
can lead to disastrous results. With the parameters above the linear transformation led to es-
timates of a=3.08 and b=0.8 to suggest that the process does not grow with x but rather de-
cays. In contrast, when an evolutionary optimization method was applied to the original 
non-linear problem,  the estimates were realistic: a=2.03 and b=1.076. 

 
This is a relatively simple data analysis example, at which a correct procedure 

can be used. However, in more complex situations of clustering or categorization, 
the very idea of a correct method seems rather debatable; at least, methods in the 
existing systems can be of a rather poor quality.   

    
One may compare the usage of an unsound data analysis method with that of 

getting services of an untrained medical doctor or car driver – the results can be as 
devastating. This is why it is important to study not only How’s but What’s and 
Why’s, which are addressed in this course by focusing on Concepts and Tech-
niques rather than Systems. Another, perhaps even more important, reason for 
studying concepts and techniques is the constant emergence of new data types 
(see, for example, recent books by Gama 2010, Mitsa 2010, Zhang and Zhang 
2009), such as related to internet networks or medecine, that cannot be tackled by 
existing systems, yet the concepts and methods are readily extensible to cover 
them. 

 
This text is oriented towards a student in Computer Sciences or related disci-

plines and reflects my experiences in teaching students of this type. Most of them 
prefer a hands-on rather than mathematical style of presentation. This is why al-
most all of the narrative is divided in three streams: presentation, formulation, and 
computation. The presentation states the problem and approach taken to tackle it, 
and it illustrates the solution at some data. The formulation provides a mathemati-
cal description of the problem as well as a method or two to solve it. The compu-
tation shows how to do that computationally with basic MatLab. Each of the 
streams can be read independently. In this way, the reader can choose the way of 
using the book and adjust it to their individual style.  

 
This three-way narrative corresponds to the three typical roles in a successful 

work team in engineering. One role is of general grasp of things, a visionary. An-
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other role is of a designer who translates the general picture into a technically 
sound project.  Yet one more role is needed to implement the project into a prod-
uct. The reader can choose either role or combine two or all three of them, even if 
having preferences for a specific type of narrative.  

 
To help the reader to study the material actively, the text is interlaced with 

problems along with their solutions. Many of the problems are put as “worked ex-
amples” to show how a specific method applies to a specific dataset. More com-
plex problems, “case studies”, may involve a rule for data generation rather than a 
pre-specified data set or an informed way for looking at the results. Yet more 
complex problems may involve uncharted terrain and an investigation, however 
small, – these are referred to as “projects”.  

 
There is a bias in the volumes of material devoted to correlation and summari-

zation subjects – the latter prevails rather considerably. This can be explained by 
both personal and objective reasons. The personal reason is that my main research 
area lies in clustering, that is, summarization. The objective reason is that the cor-
relation problems, and their theoretical underpinnings, have been already subjects 
of a multitude of monographs and texts in statistics, data analysis, machine learn-
ing, data mining, and computational intelligence. In contrast, neither clustering nor 
principal component analysis – the main constituents of summarization efforts – 
has received a proper theoretical foundation; in the available books both are 
treated as heuristics, however useful. This text presents these two as based on a 
model of data, which raises a number of issues that are addressed here, including 
that of the theoretical structure of a summarization problem. The concept of coder-
decoder is borrowed from the data processing area to draw a theoretical frame-
work in which summarization is considered as a pair of coding/decoding activities 
so that the quality of the coding part is evaluated by the quality of decoding. Luck-
ily, the theory of singular value decomposition of matrices (SVD) can be safely 
utilized as a framework for explaining the principal component analysis, and ex-
tension of the SVD equations to binary scoring vectors provides a base for K-
Means clustering and the like. This raises an important question of mathematical 
proficiency the reader should have as a prerequisite. There is no prerequisite for 
reading through the presentation and computation parts. Yet an assumed back-
ground of the reader interested in studying formulation parts should include: (a) 
basics of calculus including the concepts of function,  derivative and the first-
order optimality condition; (b) basic linear algebra including vectors, inner prod-
ucts, Euclidean distances and matrices (these are reviewed in the Appendix), and 
(c) basic set theory notation such as symbols for relations of inclusion and mem-
bership.  
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0.2. Case study problems 

To be more specific, the presentation is illustrated using a number of small 
datasets – the sizes allow the reader to see the data by a naked eye, which is al-
ways a good idea to do before engaging into the analysis. The datasets and prob-
lems are selected in such a way that methods further described could be immedi-
ately illustrated by using a relevant dataset from the collection. 

Case 0.2.1: Company 

Table 0.1. Company: A set of eight companies characterized by mixed scale 
features. The division of the table and company names reflects the fact not present 
in the data – product affinities: first three companies mostly adhere to product 
gro p A, the next three to product group B, and the last two to product group C.  u

 
Company 

 name 
Income, 

$mln 
SharP $ NSup EC Sector 

Aversi 
Antyos 

19.0 
29.4 
23.9 

43.7 
36.0 
38.0 

2 
3 
3 

No 
No 

Utility 
Utility 

Astonite No Industrial 
Bayermart 
Breaktops 

18.4 
25.7 
12.1 

27.9 
22.3 
16.9 

2 
3 
2 

Yes 
Yes 

Utility 
Industrial 

Bumchist Yes Industrial 
Civok 23.9 

27.2 
30.2 
58.0 

4 
5 

Yes Retail 
Cyberdam Yes Retail 

 
There are eight companies and five features in Table 0.1.:            

1) Income, $ Mln;  
2) SharP - share price, $;  
3) NSup – the number of principal suppliers;  
4) ECommerce - Yes or No depending on the usage of e-commerce in the com-

pany;  
5) Sector - which sector of the economy:  (a) Retail, (b) Utility, and (c) Indus-

trial. 
 

Examples of computational data analysis problems related to this data set: 
 
- How to map companies to the screen with their similarity reflected in dis-

tances on the plane? (Summarization)                                                                                                                              
 
- Would clustering of companies reflect the product? What features would be 

involved then? (Summarization) 
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- Can rules be derived to make an attribution of the product for another com-
pany, coming outside of the table? (Correlation) 
 

- Is there any relation between the structural features, such as NSup, and market 
related features, such as Income? (Correlation)      

 
Q0.1. Is the following statement is true? “There is no information on the com-

pany products within the table”. A. Yes: no “Product” feature is present in the ta-
ble; the separating lines are not part of the data. 

 
An issue related to Table 0.1 is that not all of its entries are quantitative. Spe-

cifically, there are three conventional types of features in it: 
- Quantitative, that is, such that the averaging of its values is considered 

meaningful. In the Table 0.1, these are: Income, SharePrice and NSup; 
- Binary, that is, admitting one of two answers, Yes or No: this is EC; 
- Nominal, that is, with a few disjoint not ordered categories, such as Sec-

tor in Table 0.1. 
 
Most models and methods presented in this text relate to quantitative data for-

mats only – which does not mean that categorical data are left on their own, just 
the opposite. The two non-quantitative feature types, binary and nominal, can be 
pre-processed into a quantitative format too – which is the subject treated at length 
in sections 1.3, 3.5 and 6.3, among others.  

 
A binary feature can be recoded into 1/0 format by substituting 1 for “Yes” and 

0 for “No”. In the author’s, rather unconventional, view the recoded feature can be 
considered quantitative, because its averaging is meaningful: the average value is 
equal to the proportion of unities, that is, the frequency of “Yes” in the original 
feature.  

 
A nominal feature is first enveloped into a set of binary “Yes”/”No” features 

corresponding to individual categories. In Table 0.1, binary features yielded by 
categories of feature “Sector” are:  

Is it Retail? Is it Utility? Is it Industrial?  
They are put as questions to make “Yes” or “No” as answers to them. These 

binary features now can be converted to the quantitative format advised above, by 
recoding 1 for “Yes” and 0 for “No”. The 1/0 version is frequently referred to as a 
dummy. 

 
Table 0.2 Company data from Table 0.1 converted to the quantitative format.  
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Code   Income SharP NSup EC Util Indu Retail  

  1 
 2 

19.0 
29.4 
23.9 

43.7
36.0
38.0

2 
3 
3 

0 
0 
0 

1 
1 
0 

0 
0 
1 

0 
0 
0 

 
  3 
  4 

 5 
18.4 
25.7 
12.1 

27.9
22.3
16.9

2 
3 
2 

1 
1 
1 

1 
0 
0 

0 
1 
1 

0 
0 
0 

 
  6 
  7 23.9 

27.2 
30.2
58.0

4 
5 

1 
1 

0 
0 

0 
0 

1 
1   8 

 

0.2.2. Case 2: Iris  

 

 

 
Sepal 

 
 

Petal 

 
Figure 0.1. Sepal and petal in an Iris flower. 
 
This popular dataset collected by a botanist E. Anderson and presented by R. 
Fisher in his founding paper on discriminant analysis (1936) describes 150 Iris 
specimens, representing three taxa of Iris flowers, I Iris setosa (diploid), II Iris 
versicolor (tetraploid) and III Iris virginica (hexaploid), 50 specimens from each. 
Each specimen is measured on four morphological variables: sepal length (w1), 
sepal width (w2), petal length (w3), and petal width (w4) (see Figure 0.1). 
 
Table 0.3. Iris data: 150 Iris specimens measured over four features each. 
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The taxa are defined by the genotype whereas the features are of the appearance 
(phenotype). The question arises whether the taxa can be described, and indeed 

I Iris setosa II Iris versicolor III Iris virginica  
# w1  w2  w3 w4 w1  w2  w3 w4 w1  w2  w3 w4 

5.1 3.5 1.4 0.3 
4.4 3.2 1.3 0.2 
4.4 3.0 1.3 0.2 
5.0 3.5 1.6 0.6 
5.1 3.8 1.6 0.2 
4.9 3.1 1.5 0.2 
5.0 3.2 1.2 0.2 
4.6 3.2 1.4 0.2 
5.0 3.3 1.4 0.2 
4.8 3.4 1.9 0.2 
4.8 3.0 1.4 0.1 
5.0 3.5 1.3 0.3 
5.1 3.3 1.7 0.5 
5.0 3.4 1.5 0.2 
5.1 3.8 1.9 0.4 
4.9 3.0 1.4 0.2 
5.3 3.7 1.5 0.2 
4.3 3.0 1.1 0.1 
5.5 3.5 1.3 0.2 
4.8 3.4 1.6 0.2 
5.2 3.4 1.4 0.2 
4.8 3.1 1.6 0.2 
4.9 3.6 1.4 0.1 
4.6 3.1 1.5 0.2 
5.7 4.4 1.5 0.4 
5.7 3.8 1.7 0.3 
4.8 3.0 1.4 0.3 
5.2 4.1 1.5 0.1 
4.7 3.2 1.6 0.2 
4.5 2.3 1.3 0.3 
5.4 3.4 1.7 0.2 
5.0 3.0 1.6 0.2 
4.6 3.4 1.4 0.3 
5.4 3.9 1.3 0.4 
5.0 3.6 1.4 0.2 
5.4 3.9 1.7 0.4 
4.6 3.6 1.0 0.2 
5.1 3.8 1.5 0.3 
5.8 4.0 1.2 0.2 
5.4 3.7 1.5 0.2 
5.0 3.4 1.6 0.4 
5.4 3.4 1.5 0.4 
5.1 3.7 1.5 0.4 
4.4 2.9 1.4 0.2 
5.5 4.2 1.4 0.2 
5.1 3.4 1.5 0.2 
4.7 3.2 1.3 0.2 
4.9 3.1 1.5 0.1 
5.2 3.5 1.5 0.2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 5.1 3.5 1.4 0.2 

6.4 3.2 4.5 1.5 
5.5 2.4 3.8 1.1 
5.7 2.9 4.2 1.3 
5.7 3.0 4.2 1.2 
5.6 2.9 3.6 1.3 
7.0 3.2 4.7 1.4 
6.8 2.8 4.8 1.4 
6.1 2.8 4.7 1.2 
4.9 2.4 3.3 1.0 
5.8 2.7 3.9 1.2 
5.8 2.6 4.0 1.2 
5.5 2.4 3.7 1.0 
6.7 3.0 5.0 1.7 
5.7 2.8 4.1 1.3 
6.7 3.1 4.4 1.4 
5.5 2.3 4.0 1.3 
5.1 2.5 3.0 1.1 
6.6 2.9 4.6 1.3 
5.0 2.3 3.3 1.0 
6.9 3.1 4.9 1.5 
5.0 2.0 3.5 1.0 
5.6 3.0 4.5 1.5 
5.6 3.0 4.1 1.3 
5.8 2.7 4.1 1.0 
6.3 2.3 4.4 1.3 
6.1 3.0 4.6 1.4 
5.9 3.0 4.2 1.5 
6.0 2.7 5.1 1.6 
5.6 2.5 3.9 1.1 
6.7 3.1 4.7 1.5 
6.2 2.2 4.5 1.5 
5.9 3.2 4.8 1.8 
6.3 2.5 4.9 1.5 
6.0 2.9 4.5 1.5 
5.6 2.7 4.2 1.3 
6.2 2.9 4.3 1.3 
6.0 3.4 4.5 1.6 
6.5 2.8 4.6 1.5 
5.7 2.8 4.5 1.3 
6.1 2.9 4.7 1.4 
5.5 2.5 4.0 1.3 
5.5 2.6 4.4 1.2 
5.4 3.0 4.5 1.5 
6.3 3.3 4.7 1.6 
5.2 2.7 3.9 1.4 
6.4 2.9 4.3 1.3 
6.6 3.0 4.4 1.4 
5.7 2.6 3.5 1.0 
6.1 2.8 4.0 1.3 
6.0 2.2 4.0 1.0 

6.3 3.3 6.0 2.5 
6.7 3.3 5.7 2.1 
7.2 3.6 6.1 2.5 
7.7 3.8 6.7 2.2 
7.2 3.0 5.8 1.6 
7.4 2.8 6.1 1.9 
7.6 3.0 6.6 2.1 
7.7 2.8 6.7 2.0 
6.2 3.4 5.4 2.3 
7.7 3.0 6.1 2.3 
6.8 3.0 5.5 2.1 
6.4 2.7 5.3 1.9 
5.7 2.5 5.0 2.0 
6.9 3.1 5.1 2.3 
5.9 3.0 5.1 1.8 
6.3 3.4 5.6 2.4 
5.8 2.7 5.1 1.9 
6.3 2.7 4.9 1.8 
6.0 3.0 4.8 1.8 
7.2 3.2 6.0 1.8 
6.2 2.8 4.8 1.8 
6.9 3.1 5.4 2.1 
6.7 3.1 5.6 2.4 
6.4 3.1 5.5 1.8 
5.8 2.7 5.1 1.9 
6.1 3.0 4.9 1.8 
6.0 2.2 5.0 1.5 
6.4 3.2 5.3 2.3 
5.8 2.8 5.1 2.4 
6.9 3.2 5.7 2.3 
6.7 3.0 5.2 2.3 
7.7 2.6 6.9 2.3 
6.3 2.8 5.1 1.5 
6.5 3.0 5.2 2.0 
7.9 3.8 6.4 2.0 
6.1 2.6 5.6 1.4 
6.4 2.8 5.6 2.1 
6.3 2.5 5.0 1.9 
4.9 2.5 4.5 1.7 
6.8 3.2 5.9 2.3 
7.1 3.0 5.9 2.1 
6.7 3.3 5.7 2.5 
6.3 2.9 5.6 1.8 
6.5 3.0 5.5 1.8 
6.5 3.0 5.8 2.2 
7.3 2.9 6.3 1.8 
6.7 2.5 5.8 1.8 
5.6 2.8 4.9 2.0 
6.4 2.8 5.6 2.2 
6.5 3.2 5.1 2.0 
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predicted, in terms of the features or not. It is well known from previous studies 
that taxa II and III are not well separated in the variable space. Some non-linear 
machine learning techniques such as Neural Nets (Haykin 1999 and section 3.6 
further on) can tackle the problem and produce a decent decision rule involving 
non-linear transformation of the features.  Unfortunately, rules derived with Neu-
ral Nets are typically not comprehensible to the human. The human mind needs a 
somewhat less artificial logic that is capable of reproducing and extending bota-
nists' observations such as that the petal area, roughly expressed by the product of 
w3 and w4, provides for much better resolution than the original linear sizes. 
Other problems that are of interest: (a) visualize the data; (b) build a predictor of 
sepal sizes from the petal sizes.  

Case 0.3. Market towns 

In Table 0.4 a set of Market towns in West Country, England is presented along 
with features characterizing population and social infrastructure according to cen-
sus 1991. For the purposes of social planning, it would be good to monitor a 
smaller number of towns, each representing a cluster of similar towns. In the table, 
the towns are sorted according to their population size. One can see that 21 towns 
have less than 4,000 residents. The value 4000 is taken as a divider since it is 
round and, more importantly, there is a gap of more than thirteen hundred resi-
dents between Kingskerswell (3672 inhabitants) and next in the list Looe (5022 
inhabitants). Next big gap occurs after Liskeard (7044 inhabitants) separating the 
nine middle sized towns from two larger town groups containing six and nine 
towns respectively. The divider between the latter groups is taken between Tavis-
tock (10222) and Bodmin (12553).  In this way, we get three or four groups of 
towns for the purposes of social monitoring. Is this enough, regarding the other 
features available? Are the groups, defined in terms of population size only, ho-
mogeneous enough for the purposes of monitoring?   
 
As further computations will show, the numbers of services on average do follow 
the town sizes, but this set (as well as the complete set of about thirteen hundred 
England Market towns) is much better represented with seven somewhat different 
clusters: large towns of about 17-20,000 inhabitants, two clusters of medium sized  
towns (8-10,000 inhabitants), three clusters of small towns (about 5,000 inhabi-
tants),  and a cluster of very small settlements with about 2,500 inhabitants. Each 
of the three small town clusters is characterized by the presence of a facility, 
which is absent in two others: a Farm market, a Hospital and a Swimming pool, 
respectively.  

 
Table 0.4. Data of West Country England Market Towns 1991. 
 
 



 16

Town Pop PS D Hos Ba Sst Pet DIY Swi Po CAB FM 

Mullion 
So Brent 
St Just 
St Columb 
Nanpean 
Gunnislake 
Mevagissey 
Ipplepen 
Be Alston 
Lostwithiel 
St Columb 
Padstow 
Perranporth 
Bugle 
Buckfastle 
St Agnes 
Porthleven 
Callington 
Horrabridge 
Ashburton 
Kingskers 
Looe 
Kingsbridge 
Wadebridge 
Dartmouth 
Launceston 
Totnes 
Penryn 
Hayle 
Liskeard 
Torpoint 
Helston 
St Blazey 
Ivybridge 
St Ives 
Tavistock 
Bodmin 
Saltash 
Brixham 
Newquay 
Truro 
Penzance 
Falmouth 
St Austell 
Newton Abb 

2040 
2087 
2092 
2119 
2230 
2236 
2272 
2275 
2362 
2452 
2458 
2460 
2611 
2695 
2786 
2899 
3123 
3511 
3609 
3660 
3672 
5022 
5258 
5291 
5676 
6466 
6929 
7027 
7034 
7044 
8238 
8505 
8837 
9179 
10092 
10222 
12553 
14139 
15865 
17390 
18966 
19709 
20297 
21622 
23801 
 

1 
1 
1 
1 
2 
2 
1 
1 
1 
2 
1 
1 
1 
2 
2 
1 
1 
1 
1 
1 
1 
1 
2 
1 
2 
4 
2 
3 
4 
2 
2 
3 
5 
5 
4 
5 
5 
4 
7 
4 
9 
10 
6 
7 
13 
 

0 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 
0 
1 
0 
1 
1 
0 
1 
1 
0 
0 
1 
1 
1 
0 
1 
1 
1 
0 
2 
3 
1 
2 
1 
3 
3 
2 
2 
3 
4 
3 
4 
4 
4 
4 
 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
1 
2 
0 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 

2 
1 
2 
2 
0 
1 
1 
0 
1 
2 
0 
3 
1 
0 
1 
2 
1 
3 
2 
2 
0 
2 
7 
5 
4 
8 
7 
2 
2 
6 
3 
7 
1 
3 
7 
7 
6 
4 
5 
12
19
12
11
14
13

0 
1 
1 
1 
0 
0 
0 
0 
1 
0 
1 
0 
1 
0 
2 
1 
1 
1 
1 
1 
1 
1 
1 
3 
4 
4 
2 
4 
2 
2 
2 
2 
1 
1 
2 
3 
3 
2 
5 
5 
4 
7 
3 
6 
4 
 

1 
0 
1 
1 
0 
1 
0 
1 
0 
1 
3 
0 
2 
1 
2 
1 
0 
1 
1 
2 
2 
1 
2 
1 
1 
4 
1 
1 
2 
3 
1 
3 
4 
4 
2 
3 
5 
3 
3 
4 
5 
5 
2 
4 
7 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
2 
1 
0 
3 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 
1 
0 
0 
0 
2 
1 
1 
2 
1 
2 
1 
1 
1 
1 

1 
1 
1 
1 
2 
3 
1 
1 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
1 
3 
1 
1 
2 
3 
4 
3 
2 
2 
2 
1 
4 
1 
4 
3 
2 
3 
5 
5 
7 
7 
9 
8 
7 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
2 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
0 

 
One may suggest that the only difference between these seven clusters and the 

grouping over the town resident numbers would be just difference in the dividing 
points, but both are expressed in terms of the population size only. However, one 
should not forget that the number of residents for the seven clusters is a posterior 
selection – because of our knowledge of the clusters not prior to that.  
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The data in Table 0.4 involve the counts of the following 12 features surveyed 
in the census 1991: 

 
Pop - Population resident  Pet - Petrol stations 
PS - Primary schools   DIY - Do It Yourself shops 
D - General Practitioners  Swi - Swimming pools 
Hos - Hospitals   Po - Post offices 
Ba - Banks    CAB - Citizen Advice Bureaus 
Sst - Superstores   FM - Farmer markets 

 
Case 0.4. Student 
 
In Table 0.5, a fictitious dataset is presented as imitating a typical set up for a 

group of Birkbeck University of London part-time students pursuing Master’s de-
gree in Computer Sciences.  

 
This dataset refers to a hundred students along with six features, three of which 

are personal characteristics (1. Occupation (Oc): either Information technology 
(IT) or Business Administration (BA) or anything else (AN); 2. Age, in years; 3. 
Number of children (Ch)) and three are their marks over courses in 4. Software 
and Programming (SE), 5. Object-Oriented Programming (OO), and 6. Computa-
tional Intelligence (CI).   

 
Related questions are: 
- Whether the students’ marks are affected by the personal features; 
- Are there any patterns in marks, especially in relation to occupation? 

Case 0.5. Intrusion 

With the growing range and scope of computer networks, their security be-
comes an issue of urgency. An attack on a network results in its malfunctioning, 
the simplest of which is the denial of service. The denial of service is caused by an 
intruder who makes some resource – in computing or memory – too busy or too 
full to handle legitimate requests. Also, it can deny access to a machine. Two of 
the denial-of-service attacks are known as appache2 and smurf. An appache2 in-
trusion attacks a very popular service free software/open source web server 
APPACHE2 and results in denying services to a client that sends a request with 
many http headers. The smurf acts by echoing a victim's mail, via an intermediary 
that may be the victim itself. The attacking machine may send a single spoofed 
packet to the broadcast address of some network 
 
Table 0.5. Student data in two columns. 
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Oc Age Ch SE OO CI Oc Age Ch SE OO CI  

 IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
IT 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 

73 
43 
39 
58 
74 
36 
70 
36 
56 
43 
64 
45 
72 
40 
56 
71 
73 
48 
52 
50 
33 
38 
45 
41 
61 
43 
56 
69 
50 
68 
63 
67 
35 
62 
66 
36 
35 
61 
59 
56 
60 
57 
65 
41 
47 
39 
31 
33 
64 

51 
44 
49 
27 
30 
47 
38 
49 
45 
44 
36 
31 
31 
32 
38 
48 
39 
47 
39 
23 
34 
33 
31 
25 
40 
41 
42 
34 
37 
24 
34 
41 
47 
28 
28 
46 
27 
44 
47 
27 
27 
21 
22 
39 
26 
45 
25 
25 
50  

66 
56 
72 
73 
52 
83 
86 
65 
64 
85 
89 
98 
74 
94 
73 
90 
91 
59 
70 
76 
85 
78 
73 
72 
55 
72 
69 
66 
92 
87 
97 
78 
52 
80 
90 
54 
72 
44 
69 
61 
71 
55 
75 
50 
56 
42 
55 
52 
61 

28 
35 
25 
29 
39 
34 
24 
37 
33 
23 
24 
32 
33 
27 
32 
29 
21 
21 
26 
20 
28 
34 
22 
21 
32 
32 
20 
20 
24 
32 
21 
27 
33 
34 
34 
36 
35 
36 
37 
42 
30 
28 
38 
49 
50 
34 
31 
49 
33 

57 
60 
62 
62 
70 
36 
47 
66 
47 
72 
62 
38 
38 
35 
44 
56 
53 
63 
58 
41 
25 
51 
35 
53 
22 
44 
58 
32 
56 
24 
23 
29 
57 
23 
31 
60 
28 
40 
32 
47 
58 
51 
47 
25 
24 
21 
32 
53 

33 

2 
3 
3 
2 
1 
0 
2 
1 
0 
2 
3 
2 
3 
3 
0 
1 
2 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 

90 
60 
79 
72 
88 
80 
60 
69 
58 
90 
65 
53 
81 
87 
62 
61 
88 
56 
89 
79 
85 
59 
69 
54 
85 
73 
64 
66 
86 
66 
54 
59 
53 
74 
56 
68 
60 
57 
45 
68 
46 
65 
61 
44 
59 
59 
61 
42 
60 

0 
0 
0 
1 
0 
0 
0 
1 
1 
1 
1 
0 
0 
1 
1 
0 
0 
0 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
0 
1 
1 
0 
1 
0 
2 
2 
1 
1 
2 
3 
1 
1 
2 
2 
2 
2 
3 
1 

75 
53 
86 
93 
75 
46 
86 
76 
80 
50 
66 
64 
53 
87 
87 
68 
93 
52 
88 
54 
46 
51 
59 
51 
41 
44 
40 
47 
45 
47 
50 
37 
43 
50 
39 
51 
41 
50 
48 
47 
49 
59 
44 
45 
43 
45 
42 
45 

BA 
BA 
BA 
BA 

41 
57 
61 
69 
63 
62 
53 
59 
64 
43 
68 
67 
58 
48 
66 
55 
62 
53 
69 
42 
57 
49 
66 
50 
60 
42 
51 
55 
53 
57 
58 
43 
67 
63 
64 
86 
79 
55 
59 
76 
72 
48 
49 
59 
65 
69 
90 
75 
61 

 
 
 BA 

BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 
AN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48   

53 
BA 

 AN 69 44 62 43 42 0 BA 
59    
21 

 
so that every machine on that network would respond by sending a packet to the 
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Table 0.6. Intrusion data. 
Pr BySD SH SS SE RE A Pr ByS SH SS Se RE A 
tcp        62344 16 16 0 0.94 ap tcp 287 14 14 0 0 no 
Tcp 60884 17 17 0.06 0.88 ap tcp 308 1 1 0 0 no 
Tcp 59424 18 18 0.06 0.89 ap tcp 284 5 5 0 0 no 
Tcp 59424 19 19 0.05 0.89 ap udp 105 2 2 0 0 no 
Tcp 59424 20 20 0.05 0.9 ap udp 105 2 2 0 0 no 
Tcp 75484 21 21 0.05 0.9 ap udp 105 2 2 0 0 no 
Tcp 76944 22 22 0.05 0.91 ap udp 105 2 2 0 0 no 
Tcp 59424 23 23 0.04 0.91 ap udp 105 2 2 0 0 no 
Tcp 57964 24 24 0.04 0.92 ap udp 44 3 8 0 0 no 
Tcp 59424 25 25 0.04 0.92 ap udp 44 6 11 0 0 no 
Tcp 0 40 40 1 0 ap udp 42 5 8 0 0 no 
Tcp 0 41 41 1 0 ap udp 105 2 2 0 0 no 
Tcp 0 42 42 1 0 ap udp 105 2 2 0 0 no 
Tcp 0 43 43 1 0 ap udp 42 2 3 0 0 no 
Tcp 0 44 44 1 0 ap udp 105 1 1 0 0 no 
Tcp 0 45 45 1 0 ap udp 105 1 1 0 0 no 
Tcp 0 46 46 1 0 ap udp 44 2 4 0 0 no 
Tcp 0 47 47 1 0 ap udp 105 1 1 0 0 no 
Tcp 0 48 48 1 0 ap udp 105 1 1 0 0 no 
Tcp 0 49 49 1 0 ap udp 44 3 14 0 0 no 
Tcp 0 40 40 0.62 0.35 ap udp 105 1 1 0 0 no 
Tcp 0 41 41 0.63 0.34 ap udp 105 1 1 0 0 no 
Tcp 0 42 42 0.64 0.33 ap udp 45 3 6 0 0 no 
Tcp 258 5 5 0 0 no udp 45 3 6 0 0 no 
Tcp 316 13 14 0 0 no udp 105 1 1 0 0 no 
Tcp 287 7 7 0 0 no udp 34 5 9 0 0 no 
Tcp 380 3 3 0 0 no udp 105 1 1 0 0 no 
Tcp 298 2 2 0 0 no udp 105 1 1 0 0 no 
Tcp 285 10 10 0 0 no udp 105 1 1 0 0 no 
Tcp 284 20 20 0 0 no tcp 0 482 1 0.05 .95 sa 
Tcp 314 8 8 0 0 no tcp 0 482 1 0.05 .95 sa 
Tcp 303 18 18 0 0 no tcp 0 482 1 0.05 .95 sa 
Tcp 325 28 28 0 0 no tcp 0 482 1 0.05 .95 sa 
Tcp 232 1 1 0 0 no tcp 0 482 1 0.05 .95 sa 
Tcp 295 4 4 0 0 no tcp 0 482 1 0.05 .95 sa 
Tcp 293 13 14 0 0 no tcp 0 482 1 0.06 .94 sa 
Tcp 305 1 8 0 0 no tcp 0 482 1 0.06 .94 sa 
Tcp 348 4 4 0 0 no tcp 0 482 1 0.06 .94 sa 
Tcp 309 6 6 0 0 no tcp 0 483 1 0.06 .94 sa 
Tcp 293 8 8 0 0 no tcp 0 510 1 0.04 .96 sa 
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Tcp 277 1 8 0 0 no icmp 1032 509 509 0 0 sm 
Tcp 296 13 14 0 0 no icmp 1032 510 510 0 0 sm 
Tcp 286 3 6 0 0 no icmp 1032 510 510 0 0 sm 
Tcp 311 5 5 0 0 no icmp 1032 511 511 0 0 sm 
Tcp 305 9 15 0 0 no icmp 1032 511 511 0 0 sm 
Tcp 295 11 25 0 0 no icmp 1032 494 494 0 0 sm 
Tcp 511 1 4 0 0 no icmp 1032 509 509 0 0 sm 
Tcp 239 12 14 0 0 no icmp 1032 509 509 0 0 sm 
Tcp 5 1 1 0 0 no icmp 1032 510 510 0 0 sm 
Tcp 288 4 4 0 0 no icmp 1032 511 511 0 0 sm 
 
victim machine. In fact, the attacker sends a stream of icmp 'ECHO' requests to 
the broadcast address of many subnets; this results in a stream of 'ECHO' replies 
that flood the victim.  Other types of attack include user-to-root attacks and re-
mote-to-local attacks. Some internet protocols are liable to specific types of attack, 
as just described above for imcp (Internet Control Message Protocol) which re-
lates to network functioning; other protocols such as tcp (Transcription Control 
Protocol) or udp (User Diagram Protocol) supplement conventional ip (Internet 
Protocol) and may be subject to many other types of intrusion attacks. A probe in-
trusion looking for flaws in the networking might precede an attack. A powerful 
probe software is SAINT - the Security Administrator's Integrated Network Tool  
that uses a thorough deterministic protocol to scan various network services. The 
intrusion detection systems collect information of anomalies and other patterns of 
communication such as compromised user accounts and unusual login behavior. 

 
The data set Intrusion consists of a hundred communication packages along 

with some of their features sampled from a set of artificially created data publicly 
available on webpage of MIT Lincoln Laboratory (http://www.ll.mit.edu/mission/ 
communications/ist/corpora/ideval/data/intex.html). Although the value of the data 
as a source to analyze the attacks is debatable, it does reflect the structure of the 
problem. The features reflect the packet as well as activities of its source: 

1 – Pr, the protocol-type, which can be either tcp or icmp or udp (nominal fea-
ture),   

2 - BySD, the number of data bytes from source to destination,   
3 - SH, the number of connections to the same host as the current one in the 

past two seconds, 
4 - SS, the number of connections to the same service as the current one in the 

past two seconds, 
5 - SE,  the rate of connections (per cent in SHCo) that have SYN errors, 
6 - RE,  the rate of connections (per cent in SHCo) that have REJ errors, 
7 – A, the type of attack (ap - apache, sa - saint, sm - smurf as explained above, 

and no attack (no - norm)). 
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Of the hundred entities in the set, the first 23 have been attacked by apache2, 
the consecutive 24 to 69 packets are normal, eleven entities 80 to 90 bear data on a 
saint's probe, and the last ten, 91 to 100, reflect the attack smurf. 

 
These are examples of problems arising in relation to the Intrusion data: 
- identify features to judge whether the system functions normally or is it under 

attack (Correlation); 
- is there any relation between the protocol and type of attack (Correlation); 
- how to visualize the data reflecting similarity of the patterns (Summarization). 

Case 0.6 Confusion 

     Table 0.7 presents results of an experiment on errors in human judgement, spe-
cifically, on confusion of human operators between segmented numerals (drawn 
on Figure 0.2). In the experiment, a digit flashes for a short time on screen before 
an individual (stimulus) who is to report then what digit they have seen (re-
sponse): (i,j)-the entry in Table 0.7 is the proportion of response j to stimulus i 
(Keren and Baggen 1981). The confusion matrix is understandably not symmetric, 
whereas its diagonal entries contain by far the larger proportions of observations, 
which is typical for confusion data as well as switch data.  

 

 

 

 

  

Figure 0.2. Simplified digit numerals over a rectangle with a line in the middle. 

The problem:  are there any patterns of confusion, especially if represented by 
clusters? If yes, can be any numeral shape features be found to describe the confu-
sion clusters more or less exclusively? 
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Table 0.7. Confusion data: the entries characterize the numbers of those of the 
participants of a psychological experiment who mistook the stimulus (row digit) 
for the response (column digit). 

 
St 

                   Response 
 1     2    3     4     5     6     7     8     9     0 

1 877    7    7    22     4    15    60     0     4     4 
2 14   782   47     4    36    47    14    29     7    18 
3 29    29  681     7    18     0    40    29   152    15 
4 149   22    4    732    4    11    30     7    41     0 
5 14    26   43    14   669    79    7      7   126    14 
6 25    14    7    11    97   633    4    155    11    43 
7 269    4   21    21     7     0   667     0     4     7 
8 11    28   28    18    18    70   11   577    67    172 
9 25    29  111    46    82    11    21    82   550    43 
0 18     4    7    11     7    18    25    71    21   818 

Case 07 Amino acid substitution rates 

Table 0.8 is a symmetric table of the so-called amino acid substitution scores that 
are used mainly as weight coefficients at various schemes for alignment of protein 
amino acid sequences. A protein amino acid sequence represents the protein prime 
structure that may change during the process of evolution. The main assumption 
for studying the evolution is that each two organisms share a common ancestry. 
The more similar their protein sequences are the more recent was their common 
ancestor. The likelihood of the event of amino acid i substituted by amino acid j is 
estimated by using blocks of evolutionarily related protein sequences from various 
databases. These allow estimation of probabilities p(i), p(j) and p(ij) of i, j and 
mutual substitution of i and j. Given these probabilities, the substitution scores are 
defined as integers proportional to logarithms of odd-ratios, log[p(ij)/(p(i)p(j))]. 
Elements of matrix in Table 0.8 were derived by Henikoff and Henikoff (1992) 
using such protein sequences from database BLOCK for which pair-wise align-
ments involve not more than 62% of identity, which explains the name of the ma-
trix.  

 
This matrix leads to more reasonable results than other scoring matrices;  prac-

titioners of protein alignment have selected this matrix as a standard. We consider 
BLOSUM62 as a similarity matrix and are interested in finding clusters of amino 
acids that tend to replace each other and looking at physic and chemical properties 
explaining the groupings. 
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Table 0.8. Amino acid substitution rates: BLOSUM62 matrix of substitution 
scores between amino acids presented using 1-letter code (see Table 0.9 for de-
coding). 

Aa     A   B  C   D  E   F  G  H   I   K   L  M  N  P  Q   R   S   T  V  W  X  Y  Z 

A 
B 
C 
D 
E 
F 
G 
H 
I 
K 
L 
M 
N 
P 
Q 
R 
S 
T 
V 
W 
X 
Y 
Z 

       4 -2  0 -2 -1  -2  0 -2 -1 -1  -1 -1 -2 -1 -1  -1  1  0  0 -3  -1 -2 -1  
-2  6 -3  6  2  -3 -1 -1 -3 -1  -4 -3  1 -1  0  -2  0 -1 -3 -4  -1 -3  2  

0 -3  9 -3 -4  -2 -3 -3 -1 -3  -1 -1 -3 -3 -3  -3 -1 -1 -1 -2  -1 -2 -4  
-2  6 -3  6  2  -3 -1 -1 -3 -1  -4 -3  1 -1  0  -2  0 -1 -3 -4  -1 -3  2  
-1  2 -4  2  5  -3 -2  0 -3  1  -3 -2  0 -1  2   0  0 -1 -2 -3  -1 -2  5  
-2 -3 -2 -3 -3   6 -3 -1  0 -3   0  0 -3 -4 -3  -3 -2 -2 -1  1  -1  3 -3  

0 -1 -3 -1 -2  -3  6 -2 -4 -2  -4 -3  0 -2 -2  -2  0 -2 -3 -2  -1 -3 -2  
-2 -1 -3 -1  0  -1 -2  8 -3 -1  -3 -2  1 -2  0   0 -1 -2 -3 -2  -1  2  0  
-1 -3 -1 -3 -3   0 -4 -3  4 -3   2  1 -3 -3 -3  -3 -2 -1  3 -3  -1 -1 -3  
-1 -1 -3 -1  1  -3 -2 -1 -3  5  -2 -1  0 -1  1   2  0 -1 -2 -3  -1 -2  1  
-1 -4 -1 -4 -3   0 -4 -3  2 -2   4  2 -3 -3 -2  -2 -2 -1  1 -2  -1 -1 -3  
-1 -3 -1 -3 -2   0 -3 -2  1 -1   2  5 -2 -2  0  -1 -1 -1  1 -1  -1 -1 -2  
-2  1 -3  1  0  -3  0  1 -3  0  -3 -2  6 -2  0   0  1  0 -3 -4  -1 -2  0  
-1 -1 -3 -1 -1  -4 -2 -2 -3 -1  -3 -2 -2  7 -1  -2 -1 -1 -2 -4  -1 -3 -1  
-1  0 -3  0  2  -3 -2  0 -3  1  -2  0  0 -1  5   1  0 -1 -2 -2  -1 -1  2  
-1 -2 -3 -2  0  -3 -2  0 -3  2  -2 -1  0 -2  1   5 -1 -1 -3 -3  -1 -2  0  

1  0 -1  0  0  -2  0 -1 -2  0  -2 -1  1 -1  0  -1  4  1 -2 -3  -1 -2  0  
0 -1 -1 -1 -1  -2 -2 -2 -1 -1  -1 -1  0 -1 -1  -1  1  5  0 -2  -1 -2 -1  
0 -3 -1 -3 -2  -1 -3 -3  3 -2   1  1 -3 -2 -2  -3 -2  0  4 -3  -1 -1 -2  

-3 -4 -2 -4 -3   1 -2 -2 -3 -3  -2 -1 -4 -4 -2  -3 -3 -2 -3 11  -1  2 -3  
-1 -1 -1 -1 -1  -1 -1 -1 -1 -1  -1 -1 -1 -1 -1  -1 -1 -1 -1 -1  -1 -1 -1  
-2 -3 -2 -3 -2   3 -3  2 -1 -2  -1 -1 -2 -3 -1  -2 -2 -2 -1  2  -1  7 -2 
-1  2 -4  2  5  -3 -2  0 -3  1  -3 -2  0 -1  2   0  0 -1 -2 -3  -1 -2  5 

 

Table 0.9. Amino acids and their encoding as 3-letter and 1-letter symbolics 
from web-site http://icb.med.cornell.edu/education/courses/introtobio (accessed 8 
December 2009).  

1-letter
3-

letter
Protein Residue Codons

A Ala Alanine GCT, GCC, GCA, GCG

B Asp, Asn
Aspartic acid/ Asparagi-
ne

GAT, GAC, AAT, AAC

C Cys Cysteine TGT, TGC
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D Asp Aspartic acid (Aspartate) GAT, GAC

E Glu
Glutamic acid/ Gluta-
mate

GAA, GAG

F Phe Phenylalanine TTT, TTC

G Gly Glycine GGT, GGC, GGA, GGG

H His Histidine CAT, CAC

I Ile Isoleucine ATT, ATC, ATA

K Lys Lysine AAA, AAG

L Leu Leucine TTG, TTA, CTT, CTC, CTA, CTG

M Met Methionine ATG

N Asn Asparagine AAT, AAC

P Pro Proline CCT, CCC, CCA, CCG

Q Gln Glutamine CAA, CAG

R Arg Arginine
CGT, CGC, CGA, CGG, AGA, 
AGG

S Ser Serine TCT, TCC, TCA, TCG, AGT, AGC

T Thr Threonine ACT, ACC, ACA, ACG

V Val Valine GTT, GTC, GTA, GTG

W Trp Tryptophan TGG

X Xaa Any amino acid Any

Y Tyr Tyrosine TAT, TAC

Z Glu, Gln
Glutamic acid–
Glutamine

GAA, GAG, CAA, CAG

* STOP Terminator TAA, TAG, TGA
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0.3  An account of data visualization 

0.3.1 General 

Visualization can be a by-product of the model and/or method, or it can be 
utilized by itself.  The concept of visualization usually relates to the human cogni-
tive abilities, which are not yet well understood. Computationally meaningful 
studies of structures of visual image streams such as in a movie or video began 
only recently. A most update account of the developments in information visuali-
zation can be found in Mazza (2009). 

 
We are going to be concerned with presenting data as maps or diagrams or 

digital screen objects in such a way that relations between data entities or features 
or both are reflected in distances or links, or other visual relations, between their 
images. Among more or less distinct visualization goals, beyond sheer presenta-
tion that appeals to the cognitive domination of visual over other senses, we can 
distinguish between: 

 A. Highlighting 
 B. Integrating different aspects 
 C. Narrating 
 D. Manipulating 
Of these, manipulating visual images of entities, such as in computer games, 

seems an interesting area yet to be developed in the framework of data analysis. 
There can be mentioned, though, operations of mild manipulation readily available 
at various sites already such as scrolling, representing an overview with possibili-
ties of getting further details of individual fragments by zooming or windowing, 
and an overview that allows focusing on specific fragments by enlarging them on 
the same screen (Mazza, 2009). The other three will be briefly discussed and illus-
trated in the remainder of this section. 

0.3.2 Highlighting 

To visually highlight a feature of an image one may distort the original dimen-
sions. A good example is the London tube scheme by H. Beck (1906) which 
greatly enlarges relative sizes of the Centre of London part to make them better 
seen. Such a gross distortion, for a long while being totally rejected by the authori-
ties, is now a standard for metro maps worldwide (see Figure 0.3).  
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Figure 0.3. A fragment of London Tube map made after H. Beck; the central 

part is highlighted by a disproportionate scaling.   
 
 

 
 
Figure 0.4. The Fuller Projection, or Dymaxion Map, displays spherical data 

on a flat surface of a polyhedron using a low-distortion transformation. Land-
masses are presented with no interruption. 

 
In fact, this line of thinking has been worked on in geography for centuries, 

since the mapping of the Earth global surface to a flat sheet is impossible to do ex-
actly. Various proxy criteria have been proposed leading to interesting highlights 
way beyond conventional geography maps, such as presented on Figure 0.4 (Full-
ers’ projection) and Figure 0.5 (August’s projection); see website 
http://en.wikipedia. org/wiki/ for more. 

http://en.wikipedia/
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anyFigure 0.5.  A conformal map: the angle between  two lines on the 
sphere is the same between their projected counterparts on the map; in par-
ticular, each parallel crosses meridians at right angles; and also, the sizes at 

allany point are the same in  directions. 
 
More recently this idea was applied by Rao and Card (1994) to table data (see  

Figure 0.6); more on this can be found in Card, Mackinlay and Shneiderman 
(1999) and Mazza (2009). 

 
Figure 0.6. The Table Lens machine: highlighting a fragment by dispropor-

tionally enlarging it.  
 
It should be noted that the disproportionate highlighting may lead to visual ef-

fects bordering with cheating (or being just that). This is especially apparent when 
relative proportions are visualized through proportions between areas, as in Figure 
0.7. An unintended effect of the picture is that the decline by half in one dimen-
sion is presented visually by the area of the doctor’s body, which is just not half 
but one fourth of the initial size. This grossly biases the message.    
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Figure 0.7. A decline in relative numbers of general practitioner doctors in 

California in 70-es is conveniently visualized using 1D dimensional scaling 
whereas the 2D image conveys a quadratic decline – not a half but a quarter of the 
size, and the like.  

 
Another typical case of unintentionally cheating is when the relative propor-

tions are visualized using bars that start not at the 0 point but an arbitrary mark, as 
is the case of Figure 0.8, on which a newspaper’s legitimate satisfaction with its 

 

 
 
Figure 0.8. An unintended distortion: a newspaper’s report (July 2005) is visu-

alized with bars that grow from mark 500,000 rather than 0.  
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success is visualized using bars that begin at 500,000 mark rather than 0. Another 
mistake is that the difference between the bars’ heights on the picture is much 
greater than the reported 220,000. Altogether, the rival’s circulation bar is more 
than twice shorter while the real circulation is less by mere 25%. 

0.3.3. Integrating different aspects 

Combining different features of a phenomenon into the same image can make 
life easier indeed. Figure 0.9 represents an image that an energy company utilizes  

 

 
 
Figure 0.9. An image of Con Edison company’s power grid on a PC screen ac-

cording to website  http://www.avs.com/software/soft_b/openviz/conedison.html 
as accessed in September 2008. 

 
for real time managing, control and repair of its energy network stretching over 
the island of Manhattan (New York, USA). Operators can view the application on 
their desktop PCs, monitor the grid and repair problems on the fly by rerouting 
power or sending a crew out to repair a device on site. This makes “manipulation 
and utilization of data in ways that were previously not possible,” according to the 
company’s website (see reference in the caption). 

 

http://www.avs.com/software/soft_b/openviz/conedison.html
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Figure 0.10. A scheme of a fragment of Dr. Snow’s map demonstrating that 

indeed most deaths (labeled by circles) have occurred near the water pump he was 
dealing with. 

 
Bringing features together can be useful for less immediate insights too. A 

popular story of Dr. John Snow’s fight against an outbreak of cholera in Soho, 
London, 1857, by using visual data mining goes like this. Two weeks into the out-
break, Dr. Snow went over all houses in the vicinity and made as many tics at their 
locations on his map as many deaths of cholera have occurred there (Figure 0.10 
illustrates a fragment of Dr. Snow’s map). The ticks were densest around a water 
pump, which made Dr. Snow convinced that the pump was the cholera source. (In 
fact, he had served in India to become disposed to the idea of the role of water 
flows in the transmission of the disease.) He discussed his findings with the priest 
of local parish, who removed then the handle of the pump, after which deaths 
stopped. This all is true. But there is more to this story. The death did stop - but 
because too few remained in the district, not because of the removal: the handle 
was ordered back on the very next day after it had been removed. Moreover, the 
borough council refused to accept Dr. Snow’s “water pump theory” because it 
contradicted the theory of the time that cholera progressed through stench in the 
air rather than water flow. More people died in Soho of the next cholera outbreak 
in a decade. The water pump theory was not accepted until much later, when the 
science of microbes had become developed. The story is instructive in both the 
power of visual insight and the fact that data analysis results are not conclusive: a 
data based conclusion needs a reasonable explanation to get accepted. 

 
The diagram on Figure 0.11 visualizes relations between features in Company 

data (Table 0.1.) as a decision tree to conceptually characterize their products. For 
example, the left hand branch distinctly describes Product A by combining “Not 
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        Not Retail (Ind./Util.)                             Retail 
 
   
                      
                          No                           Yes 

 Sector 

ECom  Product C 

Product BProduct A 
 
 
 
Figure 0.11. Product decision tree for the Company data in Table 0.1.  
 

retail” and “No e-commerce” edges. One more visual image depicts relations be-
tween confusion patterns of decimal numerals drawn over rectangle’s edges and  

 
  

Ab- Patterns    Descriptions    Profiles   
sence 

 
 
 
 
 
 
 
 
 
 
 
Figure 0.12. Confusion patterns for numerals, drawn over a rectangle with an 

edge through the middle, visualized from the patterns’ data analysis descriptions 
in terms of edges being present or not. The right-hand part presents profiles of the 
common edges, for comparison. 

 
their descriptions in terms of combinations of edges of the rectangle with which 
they are drawn. A description may combine both edges present and absent to dis-
tinctively characterize a pattern, whereas a profile comprises edges that are present 
in all elements of its pattern. The confusion patterns are derived from data in Ta-
ble 0.7. according to clustering of numerals in section 6.3 and Mirkin 2005. 
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0.2.3 Narrating a story 

In a situation in which data features involve a temporal and/or spatial aspects, 
integrating them in one image may lead to a visual narrative of a story, with its 
starting and ending dates, all on the same screen. Such a narrative of a military 
company from the rich history of Europe (Napoleon’s French  

 
Figure 0.13. The white band represents the trajectory of Napoleon’s army 

moving to the East and the black band shows it moving to the West, the line width 
being proportional to the army’s strength. 

 
army invading Russia 1812) is presented in Figure 0.2.11. It shows a map of Rus-
sia, with Napoleon’s army trajectory drawn forth, in white, and back, in black, so 
that the time is enveloping in this static image via the trajectory. The directions are 
shown with arrows. The trajectory’s width shows the army’s strength steadily de-
clining in time on a dramatic scale, in the absence of major fighting. 

 
All the images presented can be considered illustrations of a principle accepted 

further on. According to this principle, to visualize data, one needs to specify first 
a “ground” image, such as a map or grid or coordinate plane, which is supposed to 
be well known to the user.  Visualization, as a computational device, can be de-
fined as mapping data to the ground image in such a way that the analyzed proper-
ties of the data are reflected in properties of the image. Of the goals considered, 
integration of data will be of a priority since no temporal aspect is considered in 
this text. 
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0.4 Summary  

This chapter introduces four problems in data analysis as related to either 
summarization or correlation, in either quantitative or categorical way. The former 
two reflect the structure of theoretical knowledge as comprised, first of all, of con-
cepts and statements of relation among them. Each of these four will be given a 
specific attention in the text further on. After covering summarization and correla-
tion in 1D and 2D situations (Chapters 1 and 2), we will move on to problems of 
correlation in Chapter 3, both quantitative, that is, regression (sections 3.3 and 
3.6), and categorical, that is, classifiers (section 3.2, 3.4 and 3.5).  Chapter 4 is de-
voted to Principal component analysis and applications, and Chapters 5, 6, and 7 
describe clustering: K-means, hierarchical and networks. 

 
Next part of the Chapter introduces seven small real-world data sets and related 

data analysis problems. 
 
The final part of the Chapter discusses main goals and some specifics for data 

visualization. Integrating visualization into the methods discussed further on in a 
sound way remains a challenge for the future. 
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Pokrovski Boulevard, Moscow RF  

Abstract    

Before addressing the issue of summarization and visualization at multidimen-
sional data, this Chapter looks at these problems on the simplest level possible: 
just one feature. This also provides us with a stock of useful concepts for further 
material.  

The concepts of histogram, central point and spread are presented. Two per-
spectives on the summaries are outlined: one is the classical probabilistic and the 
other of approximation, naturally extending into the data recovery approach to 
supply a decomposition of the data scatter in the explained and unexplained parts.   

 
A difference between categorical and quantitative features is defined through 

the operation of averaging. The quantitative features admit averaging whereas the 
categorical ones not not. This difference is somewhat blurred at the binary features 
representing individual categories. They can be represented by the so-called 
dummy variables that can be considered quantitative too. 

 
Contemporary approaches, nature inspired optimization and bootstrap valida-

tion, are explained on individual cases. 
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1.1  Quantitative feature: Distribution and histogram 

1D data is a set of entities represented by one feature, categorical or quantita-
tive. There is no simple criterion to tell a quantitative feature or categorical one. 
For practical purposes a good criterion is this: a feature is quantitative if averaging 
it makes sense. Let us first consider the quantitative case.  

P.1.1  Presentation 

A most comprehensive, and quite impressive for the eye, way of summarization 
is the distribution. On the plane, one draws an x axis and the feature range bounda-
ries, that is, its minimum and maximum. The range interval is divided then into a 
number of non-overlapping equal-sized sub-intervals, bins. Then the number of 
entities that fall in each bin is counted, and the counts are reflected in the heights 
of the bars over the bins, forming a histogram. Histograms of Population resident 
in Market town dataset and Petal width in Iris dataset are presented on Figure 1.1. 

 
Q1.1. Why the bins are not to overlap? A. Each entity falls in only one bin if 

bins do not overlap, and the total of all bin counts equals the total number of enti-
ties in this case. If bins do overlap, the principle “one entity – one vote” will be 
broken. 
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Figure 1.1. Histograms of quantitative features in Iris and Market town data: 

the feature represented on x-axis and the counts on y-axis. The histogram shapes 
depend on the number of bins. 
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Q1.2. Why the bar heights on the left are greater than those on the right in Fig-
ure 1.1? A. Because bins on the right are as twice shorter than those on the left; 
therefore, the numbers of entities falling within them must be smaller. 

 
Q1.3. Is it true that when there are only two bins, the divider between them 

must be the midrange point? A. Yes, because the bin sizes are equal to each other 
(see Figure 1.2).   

 
0    a                           (a+b)/2                           b 

Figure 1.2. With just two bins on the range, the divider is mid-range. 

On Figures 1.3 and 1.4, two most popular types of histograms are presented. 
The former corresponds to the so-called power law, sometimes referred to as 
Pareto distribution. This type is frequent in social systems. According to numerous 
empirical studies, such features as wealth, group size, productivity and the like are 
all distributed according to a power law so that very few individuals or entities 
have huge amounts of wealth or members, whereas very many individuals are left 
ith virtually nothing. However, they all are important parts of the same system 
with the have-nots creating the environment in which the lucky few can strive.  
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Figure 1.3. A power type distribution. 
 
Another type, which is frequent at physical systems, is presented on Figure 1.4. 

This type of histograms approximates the so-called normal, or Gaussian, law. Dis-
tributions of measurement errors and, in general, features being results of small 
random effects are thought to be Gaussian, which can be formally proven within a 
mathematical framework of the probability theory.    
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Figure 1.4. Gaussian type distribution (bell curve). 
 
Q1.4. Take a look at the distributions on Figure 1.1. Can you see which of the 

two types they are similar to? A. The Population’s distribution is of power law 
type, and the Petal width is of Gaussian law type, as one would expect. 

 
Another popular visualization of distributions is known as a pie-chart, in which 

the bin counts are expressed by the sizes of sectored slices of a round pie (see in 
the middle of Figure 1.5). 

As one can see, histograms and pie-charts cater for perception of two different 
aspects of the distribution; the former for the actual envelopment of the distribu-
tion along the axis x, whereas the latter caters for the relative sizes of distribution 
chunks falling into different bins. There are a dozen more formats of visualization 
of distributions, such as bubble, doughnut and radar charts, easily available in Mi-
crosoft Excel spreadsheet. 
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Figure 1.5. Distribution of the number of children at Student data Child feature 
visualized as a 4-bin histogram on the left, pie-chart in the middle, and a bar set on 
the right – this seems the most appropriate of the three at the case. 

F.1.1 Formulation 

With N entities numbered from i=1, 2, …., N,  data is a set of numbers x1,…,xN. 
This set will be usually denoted by X={x1,…,xN}. 

 
To produce n bins, one needs n-1 dividers at points a+k(b-a)/n (k=1, 2, …, n-

1). In fact, the same formula works for k=0 and k=n+1 leading to the boundaries 
a as x0 and b as xn+1, which is useful for the operation of counting the number of 
entities N  falling in each of the bins k=1, 2,..., n. Note that bin k has  a+(k-1)(b-k
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a)/n and a+k(b-a)/n as,  respectively, its left and right boundary. One of them 
should be excluded from the bin so that the bins are not overlapping even on 
boundaries. These counts,  Nk, k=1, 2,..., n, constitute the distribution of the fea-
ture. A histogram is a visual representation of the distribution by drawing a bar of 
the height Nk over each bin k, k=1, 2,..., n (see Figures 1.1 and 1.3 to 1.5). Note 
that the distribution is subject to the choice of the number of bins. 

 
The histograms can be thought of as empirical expressions of theoretical prob-

ability distributions, the so-called density functions. A density function p(x) ex-
presses the concept of probability, not straightforwardly with p(x) values, but in 
terms of their integrals, that is, the areas between the p(x) curve and x-axis, over 
intervals [a,b]: such an integral equals the probability that a random variable, dis-
tributed according to p(x), falls within [a,b]. This implies that the total area be-
tween the curve an x-axis must be equal to 1, which is achieved with the corre-
sponding scaling the curve with a constant factor. 

 
The power law density function is p(x) ≈ a/xλ.where λ reflects the steepness of 

the frequency’s fall. Such a law expresses what is called the Matthew’s effect re-
ferring to the saying “He who has much, will get more; and he who has nothing, 
will lose even that little that he has,” according to Matthew’s gospel. The Mat-
tew’s effect is expressed, for example, in  “the mechanism of preferential attach-
ment”: the probability that a new web surfer hits a web-site is proportional to the 
site’s popularity, according to this mechanism.    

 
The normal, or Gaussian, law is p(x) ≈ exp[-(x-a)2/2σ2], which is sometimes 

denoted as N(a,σ). Distributions of measurement errors and, in general, features 
being results of small random effects are thought to be Gaussian, which can be 
formally proven within a mathematical framework of the probability theory. 
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Figure 1.6. Density functions of the power law with λ= −0.8, on the left, and 

normal distribution N(2,1), on the right. 
 

The parameters of this distribution, a and σ, have natural meaning: a expresses 
the expectation, or mean, and σ2 – the variance, which naturally translates in data 
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terms in section 1.2. It should be pointed out that the probability of a value x fal-
ling in the interval a ± σ according to the normal distribution is about 88%, and 
falling in the interval a ± 3σ about 99.7%, virtually unity, so that at modest sample 
sizes it is highly unlikely that a value x can fall out of this interval, which is re-
ferred sometimes as “three sigma rule”. The Gaussian distribution can be rescaled 
to the standard N(0,1) form, with 0 expectation and 1 the variance, by shifting the 
variable x to the mean, a, and normalizing it afterwards by the square root of  σ2. 
This transformation, sometimes referred to as z-scoring, is expressed with formula 
y=(x-a)/σ, where y is the transformed feature. 
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Figure 1.7. A density function p(x), which is a mixture of two normal distribu-

tions, N(2,1) weighted 0.4, and N(8,2) weighted 0.6. The area between the two 
dashed lines is the probability for value x to fall in the interval between 0 and 2 – 
not too high at this p(x)! 

 
One more popular distribution is the uniform distribution, over a range [l,r]. Its 

density is a constant function equal to p(x)=1/(r-l), so that the probability of an in-
terval (a, b) within the range is just p=(b-a)/(r-l), proportional to the length of the 
interval. 

C.1.1 Computation 

To compute the distributions on Figure 1.1, one should first load the Iris and 
Market town data sets with a MatLab command such as 

>> st=load(‘Data\town.dat’);  
% the Market data is stored at subfolder “Data” under the name “town.dat” 
after which the Population feature can be put in a different variable 
 
>> pop=st(:,1); 
% meaning all the rows of column 1 corresponding to the Population feature. 
Then command 
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>> h=hist(pop,5); 
will produce a 5×1 array h containing counts of entities within each of 5 bins, and 
command 

>> hist(pop, 5); 
will produce a figure of the histogram. 

 
To create a figure with four windows such as on Figure 1.1, one should use 

subplot commands, along with corresponding rearrangements of the axes: 
>> subplot(2,2,1);hist(sw,5);axis([2 4.5 0 80]); 
>> subplot(2,2,2);hist(sw,10);axis([2 4.5 0 80]); 
% assuming sw denotes Sepal width, column 2 of the Iris data set  
>> subplot(2,2,3);hist(pop,5);axis([2000 24000 0 30]); 
>> subplot(2,2,4);hist(pop,10);axis([2000 24000 0 30]);  
 
The command axis([a b c d]) puts the image coordinate box so that its x-axis is 

in the interval [a,b] and y-axis in the interval [c,d]. 
 
Bar- and pie-charts are produced with pie and bar commands, respec-

tively. 

1.2 Further summarization: centers and spreads 

P1.2 Centers and spreads: Presentation 

Further summarization of the data leads to presenting a feature with just two 
numbers, one expressing the distribution’s location, its “central” or other impor-
tant point, and the other representing the distribution’s dispersion, the spread. We 
review some most popular characteristics for both, the center, Table 1.1, and the 
spread, Table 1.2. 

Worked example 1.1. Mean 

For set  X={1,1,5,3,4,1,2}, mean is c=(1+1+5+3+4+1+2)/7=17/7=2.42857…, or 
rounded up to two decimals, c=2.43. 

 
This is as close an approximation to the numbers as one can get, which is good. A less 

satisfactory property is that the mean is not stable against outliers. For example, if X in 
Worked example 1.1 is supplemented with value 23, the mean becomes c=(17+23)/8=5, a 
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much greater number. This is why it is a good idea to remove some observations on both 
extremes of the data range, both the minimum and maximum, before computing the mean, 
which is utilized in the concept of trimmed mean in statistics. 

  
Table 1.1. A review of location or central point concepts 
 

# Name Explanation Comments 
1 Mean The feature’s arithmetic 

average 
0. Minimizes the summary error 

squared 
1. Estimates the distribution’s 

expected value 
2. Sensitive to outliers and dis-

tribution’s shape 
2 Median The middle of the sorted 

list of feature values 
1.  Minimizes the summary absolute 
error 
2. Estimates the distribution’s ex-
pected value 
3.   Not-sensitive to outliers 
4.   Sensitive to distribution’s shape 

3 Mid-range Middle of the range 1.   Minimizes the maximum abso-
lute error 
2.   Estimates the distribution’s ex-
pected value 
3.   Very sensitive to outliers 
4. Not sensitive to distribution’s 
shape 

4 P-quantile A value dividing the en-
tire entity set in propor-
tion P/(1-P) of feature 
values so that those with 
higher values constitute P 
proportion (upper P-
quantile) or 1-P propor-
tion (bottom P-quantile) 

 1.    Not-sensitive to outliers 
 2.   Sensitive to distribution’s shape 

5 Mode A maximum of the histo-
gram 

1.    Depends on the bin size 
2.    Can be multiple 

 
 
Worked example 1.2. Median 
To compute the median of the set from the previous example, X={1, 1, 5, 3, 4, 1, 2}, it 

must be sorted first: 1, 1, 1, 2, 3, 4, 5. The median is defined as the element in the middle, 
which is 2. This is rather far away from the mean, 2.43, which evidences that the distribu-
tion is biased towards the left end, the smaller entities. With the outlier 23 added, the sorted 
set becomes 1, 1, 1, 2, 3, 4, 5, 23, thus leading to two elements in the middle, 2 and 3.  The 
median in this case is the average of the two, (2+3)/2=2.5, which is by far lesser change 
than the mean of the extended set, 5. 
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The more symmetric a distribution, the closer its mean and median to each 
other. Sepal width of Iris data set (Table 0.3) has mean=3.05 and median=3, quite 
close values. In contrast, in Market town data (Table 0.4), Population resident’s 
median, 5258, is predictably much less than the mean, 7351.4. The mean of a 
power law distribution is always biased towards the great values achieved by the 
few outliers; this is why it is a good idea to use the median as its central value. 
The median is very stable against outliers: the values on the extremes just do not 
affect the middle of the sorted set if added uniformly to both sides.    

 
The midrange corresponds to the mean of a flat distribution, in which all bins 

are equally likely. In contrast to the mean and median, the midrange depends only 
on the range, not on the distribution. It is obviously highly sensitive to outliers, 
that is, changes of the maximum and/or minimum values of the sample. 

 
The concept of p-quantile is an extension of the concept of median, which is a 

50% quantile.  
 
Worked example 1.3. P-quantile (percentile) 
Take p=10% and determine the upper 10% quantile of Population resident feature. This 

should be 5th  value in its descending order, that is, 18966. Why is the 5th value? Because 
10% of the total number of entities, 45, is 4.5; therefore, the 5-th value leaves out p=10% of 
the largest towns in the sample. Similarly, the lower 10% quantile of the feature is 5th value 
in its ascending order, 2230.  

 
Worked example 1.4. Mode 
According to the histograms in the bottom of Figure 1.1, it is the very first bin which is 

modal in the Population resident distribution. In the 5-bin setting, it takes one fifth of the 
feature range, 23801-2040=21761, that is, 4352.   In the 10-bin setting, it is one tenth of the 
feature range, that is, 2176. In the latter case, the modal bin is interval [2040, 4216], and the 
modal bin is as twice wider, [2040, 6392], in the former case.   

 
Each of the characteristics of spread In Table 1.2 parallels, to an extent, a loca-

tion characteristic under the same number. 
 
These measures intend to give an estimate of the extent of error in the corre-

sponding centrality index. The standard deviation is the average quadratic error of 
the mean. Its use is related to the least-squares approach that currently prevails in 
data analysis and can be justified by good properties of the solutions, within the 
data analysis perspective, and properties of the normal distribution, within the 
probabilistic perspective. These paradigms are explained later in section 1.2.F.  

 
Table 1.2. A review of spread concepts. 
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# Name Explanation Comments 
1 Standard 

deviation 
The quadratic average de-
viation from the mean 

1.  Minimized by the mean 
2.  Estimates the square root of the 
variance 

2 Absolute 
deviation 

The average absolute de-
viation from the median 

Minimized by the median 

3 Half-range The maximum deviation 
from the midrange 

Minimized by the mid-range 
 

 
The absolute deviation expresses the average absolute deviation from the me-

dian. Usually, it is calculated regarding the mean, as the average error in repre-
senting the feature values by the mean. However, it is more related to the median, 
because it is the median that minimizes it. 

 
The half-range expresses the maximum deviation from the mid-range; so they 

should be used on par, as it is done customarily by the research community in-
volved in building classifying rules.  

F1.2 Centers and spreads: Formulation 

There are two perspectives on data summarization and correlation that very 
much differ from each other. One, of the classical mathematical statistics, views 
the data as generated by a probabilistic mechanism and uses the data to recover the 
mechanism or, at least, some properties of it. The other, of data analysis, does not 
much care of the mechanism and tries to look for patterns in the data instead. 

F1.2.1 Data analysis perspective 

Given a series X={x1,…,xN}, one defines the centre of X as a minimizing the 
average distance 

 
                     D(X,a)=[d(x1,a)+d(x2,a)+…+d(xN,a)]/N  (1.1) 
 
Depending on the definition of the distance, the optimal a can be expressed as 

follows. 
 
Consider first the least-squares formulation. According to this approach the dis-

tance is measured as the squared difference, d(x,a)=|x-a|2. The minimum distance 
(1.1) then is reached at a equal to the mean c defined by expression 
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At the more traditional distance measure d(x,a)=|x-a| in (1.1), the optimal a (cen-
ter) is but the median, m , and D(X,a) the absolute deviation from the median, 
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To be more precise, the optimal a in this problem is median, that is the value 

x(N+1)/2 in the sorted order of X, when N is odd. When N is even, any value between 
x  and xN/2 N/2+1 in the sorted order of X is a solution, including the median. 

 
If D(X,a) is defined not by the sum, but by the maximum of the distances, 

D(X,a)= max (d(x1,a), d(x2,a), …, d(xN, a)), then the midrange mr is the solution, 
for d(x,a) specified as both |x-a|2 and |x-a|. 

 
These statements explain the parallels between the centers and corresponding 

spread evaluations reflected in Tables 1.1 and 1.2, with each of the centers mini-
mizing its corresponding measure of spread. 

 
The distance minimization problem can be reformulated in the data recovery 

perspective. In the data recovery perspective, the observed values are assumed to 
be but noisy realizations of an unknown value a. This is reflected in the form of an 
equation expressing xi through a: 

 
xi = a + ei, for all i=1,2,…, N,           (1.5) 

 
in which ei are additive errors, or residuals, that are to be minimized.  

 
One cannot minimize all the residuals in (1.5) simultaneously. An integral 

criterion is needed to embrace them all. A general family of such criteria is known 
as Minkowski’s criterion or Lp norm. It is specified by using a positive number 

 
p p p                         Lp=(|e1| +|e2|  +…+ |eN| )1/p
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At a given p, minimizing Lp or, equivalently, its p-th power Lp
p, would lead to a 

specific solution. Most popular are values p=1, 2, and ∞ (infinity) leading to: 
 
(1) Least-squares criterion L2

2=e1
2+ e2

2 +…+ eN
2 at p=2. 

Its minimization over unknown a is equivalent to the task of minimizing the 
average squared distance, thus leading to the mean as the optimal a. 

  
(2) Least-modules criterion L1=|e1|+|e2|+…+ |eN| at p=1. 
Its minimization over unknown a is equivalent to the task of minimizing the 

average absolute deviation, thus leading to the median, optimal a=m. 
 
(3) Least-maximum criterion L∞= max(|e1|, |e2|, … |eN|) at p= ∞. Minimization 

of L∞ with respect to a is equivalent to the task of minimizing the maximum 
deviation leading to the midrange, optimal a=mr. 

…+ xN
2 . 

6). 

 
The Minkowski’s criteria (1)-(3) may look just as trivial reformulations of the 

distance approximation criterion (1.1). This, however, is not exactly so. The equa-
tion (1.5) adds to the solution one more equation. It allows for a decomposition of 
the data scatter involving the corresponding data recovery criterion.  

 
This is rather straightforward for the least-squares criterion L2 whose minimal 

value, at a equal to the mean c (1.1) is L2
2= (x1-c)2+ (x2-c)2 +…+ (xN-c)2. With 

little algebra, this becomes L2
2 = x1

2+ x2
2 +…+ xN

2 - 2c(x1+x2+… +xN) + Nc2 = 
x1

2+ x2
2 +…+ xN

2 - Nc2 =T(X) - Nc2.where T(X) is the quadratic data scatter 
defined as T(X)= x1

2+ x2
2 +

 
This leads to equation T(X) = Nc2 + L2 decomposing the data scatter in two 

parts: that explained by the model (1.5), Nc2, and that unexplained, L2
2. Since the 

data scatter is constant, minimizing L2
2 is equivalent to maximizing Nc2. The 

decomposition of the data scatter allows measuring the adequacy of model (1.5) 
not by just the averaged square criterion, the variance, by the relative value of the 
explained part L2

2/T(X). A similar decomposition can be derived for the least 
modules L1 (see Mirkin 199

 
Q1.5. Consider a multiplicative model for the error, xi = a(1+ei), assuming that 

errors are proportional to the values. What center a would fit the data with the 
least-squares criterion? A. According to the least squares approach, the fit should 
minimize the summary errors squared. Every error can be expressed, from the 
model, as  ei= xi/a -1= (xi-a)/a. Thus the criterion can be expressed as L2

2 = ei
2 + 

ei
2 +… ei

2= (x1/a -1) 2 + (x2/a -1) 2 +…. (xN/a -1) 2.  Applying the first order opti-
mality condition, let us take the derivative of L2

2 over a and equate it to zero. The 
derivative is L2

2′= -(2/a3)Σi(xi-a)xi. Assuming the optimal value of a is not zero, 
the first order condition can be expressed as Σi(xi- a)xi =0, so that a =Σi xi

2/ Σi xi = 
(Σi xi

2/N)/(Σi xi/N). The denominator here is but the mean, c, whereas the numera-
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tor can be expressed through the variance s2 because of equation s2 = Σi xi
2/N - Σi 

xi/N which is not difficult to prove. With little algebraic manipulation, the least-
squares fit can be expressed as a = s2/c +1. The variance to mean ratio s2/c, equal 
to a -1 according to the model, emerges also in statistics as a good relative esti-
mate of the spread.  

 
It seems rather natural that both, the standard deviation and absolute deviation, 

are not greater than half the range, which can be proven mathematically (see sec-
tion F1.3). 

 
Q1.6. Prove that Minkowski’s center is not sensitive with respect to changing 

the scale factor. 
 
Q1.7. Prove that Minkovski’s center grows whenever power p grows. 
 
Q1.8. For the Population resident feature in Market town data compute Min-

kowski center at p= 0.5, 1, 2, 3, 4, 5. A. See solutions found using the cm.m code 
developed in Project 1.1 (and confirmed, at p>1, with the anti-gradient AG-MC 
method) in Table 1.3. 

 
Table 1.3. Minkowski’s metric centers of the Population resident in Market 

town dataset for different power values p. 
 

p Minkowski’s center Data scatter unexplained 

0.5 
1 
2 
3 
4 
5 

  2611.0 
  5258.0 (median) 
  7351.4 (mean) 
  8894.9 
  9758.8 
10294.5 

0.7143 
0.6173 
0.4097 
0.2318 
0.1186 
0.0584 

F1.2.2. Probabilistic statistics perspective 

In classical mathematical statistics, a set of numbers X= {x1, x2,…, xN} is usu-
ally considered a random sample from a population defined by probabilistic distri-
bution with density f(x), in which each element xi is sampled independently from 
the others. This involves an assumption that each observation xi is modeled by the 
distribution f(xi) so that the mean’s model is the average of distributions f(xi). The 
population analogues to the mean and variance are defined over function f(x) so 
that the mean, median and the midrange are unbiased estimates of the population 
mean. Moreover, the variance of the mean is N times less than the population vari-
ance, so that the standard deviation tends to decrease by √N when N grows. 
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Let us further assume that the population’s probabilistic distribution is Gaus-

sian N(μ, σ) with density function  
 

f(u)= Cexp{-(u - μ)2 / 2σ2},    (1.6)  
 

where C stands for a constant term equal to C=(2πσ2) -½ . Then c in (1.2) is an es-
timate of μ  and s in (1.3), of σ in (1.6). These parameters amount to the popula-
tion analogues of the mean and variance defined, for any density function f(u), as  
μ = ∫uf(u)du and σ2 = ∫(u-μ)2f(u)du where the integral is taken over the entire u 
axis.  

 
Consider now that the set X is a random independent sample from a population 

with a Gaussian,  for the sake of simplicity, probabilistic density function f(x)= 
Cexp{-(x - μ)2 / 2σ2}.where  μ and σ2  are unknown parameters and  C=(2πσ2) -

½. The likelihood of randomly obtaining xi then will be  Cexp{-(xi - μ)2 / 2σ2}. 
The likelihood of the entire sample X will be the product of these values, because 
of the independence assumption. Therefore, the likelihood of the sample is 
L(X)=Πi∈ICexp{-(xi - μ)2 / 2σ2} = CNexp{-∑ i∈I (xi - μ)2 / 2σ2}.  One may even go 
further and express L(X) as L(X) = exp{Nln(C)-∑ i∈I (xi - μ)2 / 2σ2}.where ln is the 
natural logarithm (over base e). A well established approach in mathematical sta-
tistics, the principle of maximum likelihood, claims that the values of μ and σ2 
best fitting the data X are those at which the likelihood L(X) or, equivalently its 
logarithm, ln(L(X)), reaches its maximum. The maximum of ln(L)= Nln(C)-∑ i∈I 
(xi - μ)2/2σ2 is reached at μ  minimizing the expression in the exponent, E= 
∑i∈I(xi - μ)2, which is in fact the summary quadratic distance (1.1), that is, the 
least- squares criterion, which thus can be derived from the assumption that the 
sample is randomly drawn from a Gaussian population. This, however, does not 
mean that the least-squares criterion is only meaningful under the normality as-
sumption: the least-squares has a meaning of its own within the data analysis 
paradigm. 

 
Likewise, the optimal  σ2 minimizes part of ln(L) depending on it,  g(σ2)= - 

Nln(σ2)/2 - ∑ i∈I (xi - μ)2 / 2σ2. It is not difficult to find the optimal σ2 from the 
first-order optimality condition for g(σ2). Let us take the derivative of the function 
over σ2 and equate it to 0:  dg/d(σ2)= - N/(2σ2) + ∑ i∈I (xi - μ)2 / 2(σ2)2 =0. This 
equation leads to σ2 = ∑ i∈I (xi - μ)2 /N, which means that the variance s2 is the 
maximum likelihood estimate of the parameter in the Gaussian distribution.   

 
However, when  μ is not known beforehand but rather found from the sample 

according to formula (1.2) for the mean, s2 in (1.3) is a slightly biased estimate of 
σ2 and must be corrected by taking the denominator equal to N-1 rather than N 
which is the case in many statistical packages. The intuition behind the correction 
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is that equation (1.2) is a relation imposed by us on the N observed values, which 
effectively decreases the “degree of freedom” in the observations from N to N-1. 

 
In situations in which the data entities can be plausibly assumed to have been 

randomly and independently drawn from a Gaussian distribution, the derivation 
above justifies the use of the mean and variance as the only theoretically valid es-
timates of the data center and spread. The Gaussian distribution has been proven 
to approximate well situations in which there are many small independent random 
effects adding to each other. However, in many cases the assumption of normality 
is highly unrealistic, which does not necessarily lead to rejection of the concepts 
of the mean and variance – they still may be utilized within the general data analy-
sis perspective.   

 
In some real life situations, the assumption that X is an independent random 

sample from the same distribution seems rather adequate. However, in most real-
world databases and multivariate samplings this assumption is far from being real-
istic. 

C1.2 Centers and spreads: Computation 

In MatLab, there are commands to compute mean(X) and median(X), which 
can be done over X being a matrix, not just a vector. The result will be a row of 
within-column means or medians, respectively. To compute the row of mid-
ranges, one can use a combined command mr=(max(X)+min(X))/2. To compute 
an upper p-quantile of a feature vector x, one should first sort it, in descending or-
der, with command sx=sort(x, ‘descent’), after which the quantile is determined as 
sx(k) where k=ceil(p*length(x)). 

 
The standard deviation is computed with command std(x), with N-1 in the de-

nominator of (1.3), or std(x,1), with N in the denominator. 
A stable version of the range that can be used at large N values or when outliers 

are expected, can be defined by utilizing the concept of quantile. Initially, a value 
of the proportion p, say  1% or 2% is specified. The upper (lower) p-quantile is a 
value xp of X such that the proportion of entities with larger (smaller) than xp val-
ues is p. The 2p-quantile range is defined as the interval between these p-
quantiles, stretched up according to the proportion of entities taken out, (xp – 
px)/(1-2p), where xp and px are the upper and lower p-quantiles, respectively. For 
example, at p= 0.05% and N=100,000, xp cuts off 50 largest and px, 50 smallest, 
values of X.  
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1.3 Binary and categorical features 

P1.3 Binary and categorical features:  Presentation  

A categorical feature differs from a quantitative one not just because its values 
are strings, not numbers - they are coded by numbers anyway to be processed. The 
average of a quantitative feature is always meaningful, whereas the averaging of 
categories, such as Occupations – BA, IT or AN –  in Student data or Sector of 
Economy – Retail, Utility or Industry – in Company data, makes no sense even af-
ter they are coded by numbers. The applicability of the operation of averaging is 
indeed a defining property of being quantitative. For example, one may claim that 
a feature like the number of children in Student data (see Figure 1.5) is not quanti-
tative because its values can only be whole numbers. Still, a statement like “the 
average number of children per woman is 1.85” does make sense because it can be 
easily made legitimate by moving to counting by hundreds: there are 185 children 
per every hundred women.  

 
A feature admitting only two, either “Yes” or “No”, values is conventionally 

considered Boolean in Computer Sciences, thus relating it to Boolean algebra with 
its “True” and “False” statement evaluations. We do not adhere to this strict logic 
approach but rather engage the numbers and arithmetic. The values not only can 
be coded by numerals 1, for “Yes”, and 0, for “No”, but also arithmetic operations 
on them can be meaningful too. Two-valued features will be referred to as binary 
ones. 

  
The mean of a 1/0 coded binary feature is the proportion of its “Yes” values, 

which is rather meaningful. The other above defined central values bear much less 
information. The median is 1 only if the proportion of ones is 0.5 or greater; oth-
erwise, it is 0. In a rare event when the number of entities is even and the propor-
tion of ones is exactly one half, the median is one half too. The mode is ether 1 or 
0 , the same as the median. 

 
For categorical features, there is no need to define bins: the categories them-

selves play the role of bins. However, their histograms typically are visualized 
with bars or stems, like on Figure 1.8 that represents the distribution of categories 
IT, BA and AN of Occupation feature in Student data. 
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Figure 1.8. The distribution of categories IT, BA and AN of Occupation fea-

ture in Student data shown with bars on the left and stems on the right. 
. 
The distribution of the feature can be expressed in absolute numbers of entities 

falling in each of the categories, that is, D=(35, 34, 31), or on the relative scale, by 
using proportions found by dividing frequencies over their total, 35+34+31=100, 
which leads to the relative frequency distribution d=(0.35, 0.34, 0.31). 

 
This distribution is close to the uniform one in which all frequencies are equal 

to each other. In real life, many distributions are far from that. For example the 
distribution by race of the 878,153 stop-and-search cases performed by police in 
England and Wales was widely discussed in the media (see Table 1.4. and BBC’s 
website http://news.bbc.co.uk/1/hi/uk/7069791.stm of 29/10/07.) This is far from 
uniform indeed: the proportion of W category is thrice greater than of the other 
two taken together. Yet it was a claim of racial bias because the proportion of W 
category in the population is even higher than that (for further analysis, see section 
2.3).  

 
Table 1.4. Race distribution of stop-and-search cases in England and Wales in 

2005/6.  
   

Race Number of “stop-and-searches” Relative frequency, % 
Black (B) 131723   15 
Asian (A)   70250      8 
White (W) 676180   77 
Total 878153 100 

 
Q. 1.9. What is the modal category in the distribution of Table 1.4? in Occupa-

tion on Student data? A. These are most likely categories, W in Table 1.4 and IT 
in Student data. 

 

http://news.bbc.co.uk/1/hi/uk/7069791.stm%20of%2029/10/07
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A number of coefficients have been proposed to evaluate how much a distribu-
tion differs from the uniform distribution. The most popular are the entropy and 
Gini index. The latter also is referred to as the categorical variance. 

The entropy measures the amount of information in signals being transferred 
over a communication channel. Intuitively, a rare signal bears more information 
than a more frequent one. Additionally, the levels of information in independent 
signals are to be summed up to estimate the total information. These two require-
ments lead to the choice of logarithm of 1/p, that is, -log(p), for scoring the level 
of information in a signal which appears with the probability (frequency) p. The 
logarithm’s base is taken to be 2, because all the digital coding uses the binary 
number system. The entropy is defined as the averaged level of information in 
categories of a categorical feature. The unit of entropy has been chosen to be the 
bit, which is the entropy of a uniformly distributed binary feature, also referred to 
as a binary digit with two equally likely states. Intuitively, one bit is the level of 
information given in an answer to a Yes-or-No question in which no prior knowl-
edge of the possible answer is assumed. The maximum entropy of a feature with m 
categories, H=log(m), is reached when their distribution is uniform. The maxi-
mum Gini index, (m-1)/m is reached at the uniform distribution too. Gini index 
measures the average level of error of the method of proportional classifier. Given 
a sequence of entities with unknown values of a categorical feature, the propor-
tional classifier assigns entities with values chosen randomly, each with a prob-
ability proportional to its frequency. The average error of a category whose fre-
quency is p is equal to p(1-p)=p-p2.  If, for example, p=20%, then the average 
error is 0.2 - 0.2*0.2=16%. 

 
Worked example 1.5. Entropy and Gini index of a distribution 
 
Table 1. 5 presents all the steps to compute the value of entropy, the summary –plog(p) 

value, and Gini index, the summary p(1-p) value where p are probabilities (relative fre-
quencies) of categories .   

 
Table 1.5. Entropy and Gini index for race distribution in Table 1.4.  

  
           Distribution             Entropy Qualitative variance 

Category Relative  
frequency  p   

Information  
–log(p) 

Weighted  
–plog(p) 

Error  
1-p 

Variance  
   p(1-p) 

B 0.15  1.90 0.41 0.85 0.128 
A 0.08   2.53 0.29 0.92 0.074 
W 0.77  0.26 0.29 0.23 0.177 

Total 1.00  0.99  0.378 
 
Entropy is the averaged amount of information in the three categories, H= − p1log(p1) − 

p2log(p2) − p3log(p3). The entropy in Table 1.5 relative to the maximum is 0.99/1.585 = 
0.625 because at m=3 the maximum entropy is H=log(3)=1.585. Gini index is defined as 
the average error of the proportional prediction. The proportional prediction mechanism is 
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defined over a stream of entities of which nothing is known beforehand except for the dis-
tribution of categories {p }. This mechanism predicts category l at an entity in pl l proportion 
of all instances. In our case, G= p1(1−p )+ p (1−p1 2 2)+ p (1−p3 3)=0.378. The maximum Gini 
index value, (m-1)/m, is reached at the uniform distribution, that is, G=2/3. The relative 
Gini index, thus, is 0.378/(2/3)=0.567, which is not that different from the relative entropy. 

F1.3 Formulation 

A categorical feature such as Occupation in Students data or Protocol in Intru-
sion data, partitions the entity set in such a way that each entity falls in one and 
only one category. Categorical features of this type are referred to as nominal 
ones.  

 
If a nominal feature has L categories l=1,…,L, its distribution is characterized 

by amounts N1 ,  N2 , …, NL of entities that fall in each of the categories. Because 
of the partitioning property these numbers sum up to the total number of entities,  
N1 + N2  …. NL =N. The relative frequencies, defined as p = N1 l/N, sum up to the 
unity (l=1, 2, …., L).   

 
Since categories of a nominal feature are not ordered, their distributions are 

better visualized by pie-charts than by histograms.  
 
The concepts of centrality, except for the mode, are not applicable to categori-

cal feature distributions. Spread here is also not quite applicable. However, the 
variation – or diversity - of the distribution (p1, p2, …, pL) can be measured. There 
are two rather popular indexes that evaluate dispersion of the distribution, Gini in-
dex, or qualitative variance, and entropy.  

 
Gini index G is the average error of the proportional prediction rule. According 

to the proportional prediction rule, each category l, l=1,2, …, L,  is predicted ran-
domly with the distribution (pl), so that l is predicted at Npl cases out of N. The 
average error of predictions of l in this case is equal to 1- pl, which makes the av-
erage arror to be equal to: 

∑
=

−=∑
=

−=
L

l
lp

L

l
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Entropy averages the quantity of information in category l as measured by 

log(1/p )=-log(p ) over all l. The entropy is defined as l l
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This is not too far away from the Gini index, the qualitative variance, because 

at small p, -log(1-p) and  1 – p coincide, up to a very minor difference, as is well 
known from calculus (see Figure 1.9). 

 
 
 
 

 
 
 
Figure 1.9.  Graphs of functions of the error f(p)=1-p involved in Gini index 
(dashed line) and the information  f(p)=–log(p). 

 
A very important class of nominal features consists of features with only two 

categories – binary features. They may emerge independently as some attributes or 
divisions. They also can be produced by converting categories of categorical fea-
tures into binary attributes. For example, IT occupation in Student data can be 
converted into a question “Is it true that the student’s occupation is IT?”, that is, a 
binary feature with answers Yes and No.  

 
These combine properties of both categorical and quantitative features. Indeed, 

an important difference between categorical and quantitative features is in their 
admissible coding sets. An admissible numerical recoding of values of a feature 
changes them consistently, in such a way that the relations between entities ac-
cording to the feature remain intact. For example, the human heights in centime-
ters can be recoded in millimeters, by multiplying them by 10, or temperatures at 
various locations expressed in Fahrenheit can be recoded in Celsius, by subtract-
ing 32 and dividing the result by 1.8. Such a recoding would not change the rela-
tions between locations that have been put in effect when Fahrenheit temperatures 
had been recorded. If, however, we assign arbitrary values to the temperatures, the 
new set will be inconsistent with the previous one and give a very different infor-
mation. This is the borderline between quantitative and nominal features: the 
nominal feature can only compare if the categories are the same or not, thus ad-
mitting any one-to-one recoding as admissible, whereas the quantitative feature 
can only admit shifts of the origin of the scale and change of the scale factor. This 
borderline however is not quite hard. The binary features, as nominal ones, admit 
any numerical recoding. But the recoding, in this case, can always be expressed as 
a shift of the origin and change of the scale factor. Indeed, for any two numbers, α 

∑
L

−=
l=

lplpH
1

log

p 
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and β,  a conversion of the feature values from 0 to α and from 1 to β can be 
achieved in a conventional quantitative fashion by using two rescaling parameters: 
the shift of the origin (α) and scaling factor (β - α).  

or No. Thus coded, a binary feature sometimes is referred 
to as a dummy variable. 

cordingly, the

 
Thus, a binary feature can be always considered as coded into a quantitative 1/0 

format, 1 for Yes and 0 f

 
To compute the variance of a binary feature, whose mean c=p, sum up Np 

items (1-p)2 2 2  and N(1-p) items p , which altogether leads to s = p(1-p)=1-p2. Ac-
 standard deviation is the square root of the variance, 

(1 )s p p= − . Obviously, this is maximum when p=0.5, that is, both binary val-
ues are equally likely. The range is always 1. The absolute deviation, in the case 
when p<0.5 so that median m=0, comprises Np items that are 1 and N(1-p) items 
that are 0, so that sm=p. When p>0.5, m=1 and the number of unity distances is 
N(1-p) leading to sm=1-p. That means that, in general, sm=min(p,1-p), which is 
less than or equal to the standard deviation. Indeed, if p≤0.5, then p≤1-p and, thus, 
p2≤ p(1-p), so that ms≤ s. Analogously, if p>0.5 then p>1-p and, thus, p(1-p)>(1-
p)2 so that again sm<s, which proves the statement.  

ariables is equal to 
the Gini index, or qualitative variance, of the original feature. 

ar models can be considered for nominal features with 
mo wo categories. 

, 
 
When a categorical feature is converted into a set of binary features corre-

sponding to its categories, the total variance of the L binary v

 
There are some probabilistic underpinnings to binary features. Two models are 

popular, one by Bernoulli and another by Poisson. Given p, 0 ≤ p ≤ 1, Bernoulli 
model assumes that every xi is either 1, with probability p, or 0, with probability 1-
p. Poisson model suggests that, among the N binary numerals, random pN are uni-
ties, and (1-p)N zeros. Both models yield the same mathematical expectation, p. 
However, their variances differ: the Bernoulli distribution’s variance is p(1-p), 
whereas the Poisson distribution’s variance is p, which is obviously greater for all 
positive p, because the factor at Bernoulli standard deviation, 1-p, is less than 1 
under this condition. Simil

re than t
 
There is a rather natural, though somewhat less recognized, relation between 

quantitative and binary features: the variance of a quantitative feature is always 
smaller than that of the corresponding binary feature. To explicate this according 
to Mirkin (2005), assume the interval [0,1] to be the range of data X={x1,…,xN}. 
Assume that the mean c divides the interval in such a way that a proportion p of 
the data is greater than or equal to c, whereas proportion of those smaller than c is 
1-p. The question then is this: given p, at what distribution of X the variance is 
maximized. To address the question, assume that X be any given distribution 
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within interval [0,1] with its mean at some interior point c. According to the as-
sumption, there are Np observations between 0 and c. Obviously, the variance can 
only increase if we move each of these points to the boundary, 0. Similarly, the 
variance will only increase if we push each of N(1-p) points between c and 1, into 
the opposite boundary 1. That means that the variance p(1-p) of a binary variable 
with Np zero and N(1-p) unity values is the maximum, at any p. The following is 
proven. A binary variable, whose distribution is (p, 1-p), has the maximum vari-
ance, and the standard deviation, among all quantitative variables of the same 
ran e and p entries below its average. 

efore, the standard 
de

deviation among the 
variables of the same range, which can be proven similarly. 

C1.3 Computation 

 the distribution of a feature is in vector df, then a command like 

n the histogram and the border in the draw-
e (see Figure 1.8). 

ini index for the distribution presented in vector 

opy 
> df=df/sum(df); g=-sum(df .*(1-df)); % h is Gini 

s and variances 
Compare the variances with Gini index for the original features. 

g
 
This implies that no variable over the range [0,1] has its variance greater than 

the maximum ¼ reached by a binary variable at p=0.5. The standard deviation of 
this binary variable is ½, which is just half of the range. Ther

viation of any variable cannot be greater than its half-range. 
The binary variables also have the maximum absolute 

If
 
>> bar(df, .4);h=axis;axis(1.1*h); 
will produce its bar drawing. The parameters here are: 0.4 the width of bars, 1.1 
the rescaling to allow some air betwee
ing fram
 
Computation of the entropy and G
df can be done with commands: 
>> df=df/sum(df); h=-sum(df .*log2(df)); % h is entr
>
 
Q.1.10 Take nominal features from the Intrusion data set and generate category-
based binary features, after which compute their individual mean
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1.4  Modeling uncertainty: Intervals and fuzzy sets 

1.4.1 Individual membership functions 

In those cases when the probability distributions are unknown or inapplicable, 
intervals and fuzzy sets are used to reflect uncertainty in data. When dealing with 
complex systems, feature values cannot be determined precisely, even for such a 
relatively stable and homogeneous dimension as the population resident in a coun-
try. The so-called “linguistic variables” (Zadeh 1970) express imprecise categories 
and concepts in terms of appropriate quantitative measures, such as the concept of 
“normal temperature” of an individual – a body temperature from about 36.0 to 
36.9 Celsius or “normal weight” –  the Body Mass Index BMI (the ratio of the 
weight, in kg, to the height, in meters, squared) somewhat between 20 and 25. 
(Those with BMI > 25 are considered overweight or even obese if BMI>30; and 
those with BMI < 20, underweight). In these examples, the natural boundaries of a 
category are expressed as an interval. 

 
      A more flexible description can be achieved using the concept of fuzzy set A 
expressed by the membership function μA(x) defined, on the example of Figure 
1.10, as:  

 

(x)=  

⎪
⎪
⎩

⎪
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≤≤

≤≤−
≥≤  
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xif

xifx
xorxif
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This function says that the normal weight does not occur outside of the BMI inter-
val [18, 27]. Moreover, the concept applies in full, with the membership 1, only 
within BMI interval [22, 24]. There are “grey” areas expressed with the slopes on 
the left and the right so that, say, a person with BMI=20 will have the membership 
value μA(20) = 0.25*20 – 4.5 = 0.5 and the membership of that with BMI = 26.1, 
will be μ (26.1) = -26.1/3 + 9 = -8.7+9 = 0.3.  A

 
 

   18       22  24      27                        x   

 
    

1
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Figure 1.10. A trapezoidal membership function expressing the concept of 
normal body mass index; a positive degree of membership is assigned to each 
point within interval [18, 27] and, moreover, those between 22 and 24 cer-
tainly belong to the set. 
 
In fact, a membership function may have any shape; the only requirement 

perhaps that there should exist at least one point or sub-interval at which the func-
tion reaches the maximum value 1. A fuzzy set formed with straight lines, such as 
those on Figure 1.11, is referred to as a trapezoidal fuzzy set. Such a set can be 
represented by four points on the axis x: (a,b,c,d) such that μA(x) =0 outside the 
outer interval [a,d] and μA(x) = 1 inside the inner interval [b,c] (with the straight 
lines connecting points (a,0) and (b,1) as well as (c,1) and (d,0)  (see Figure 1.10). 

 

18      22          27                        x 

μ(x) 
  

 
 
 
 
 
Figure 1.11. A triangular fuzzy set for the normal weight BMI. 

 
Both the precise and interval values can be considered special cases of trapezoidal 
fuzzy sets. An interval (a, b) can be equivalently represented by a trapezoidal 
fuzzy set (a, a, b, b) in which all points of (a, b) have their membership value 
equal to 1, and a point a can be represented by trapezoidal fuzzy set (a,a,a,a). 
 
The so-called triangular fuzzy sets are also popular. A triangular fuzzy set A is 
represented by an ordered triplet (a,b,c) so that μA(x) =0 outside the interval [a,c] 
and μ (x) = 1 only at x=b, with values of  μA A(x) in between are represented by the 
straight lines between points (a,0) and (b,1) and between (c,0) and (b,1) on the 
Cartesian plane, see Figure 1.11. 

Fuzzy sets presented on Figures 1.10 and 1.11 are not equal to each other: only 
those fuzzy sets A  and B are equal at which μ (x) = μA B(x) for every x, not just out-
side of the base interval. 
 
A fuzzy set should not be confused with a probabilistic distribution such as a his-
togram: there may be no probabilistic mechanism nor frequencies behind a mem-
bership function, just an expression of the extent at which a concept is applicable. 
A conventional, crisp set S, can be specified as a fuzzy set whose membership 
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function μ admits only values 0 or 1 and never those between; thus, μ(x)=1 if x∈S 
and μ(x)=0, otherwise. 
 
Q.1.11. Prove that triangular fuzzy sets are but a special case of trapezoidal fuzzy 
sets. A. Indeed a triangular fuzzy set (a,b,c) can be represented by a trapezoidal 
fuzzy ste (a,b,b,c). 
 
There are a number of specific operations with fuzzy sets imitating those with the 
“crisp” sets, first of all, the set-theoretic complement, union and intersection. 
 
The complement of a fuzzy set A is fuzzy set B such that μB(x)=1- μA(x). The un-
ion of two fuzzy sets, A and B, is a fuzzy set denoted by A∪B whose membership 
function is defined as μA∪B(x) = max (μA(x), μB(x)).  Similarly, the intersection of 
two fuzzy sets, A and B, is a fuzzy set denoted by A∩B whose membership func-
tion is defined as μA∩B(x) = min(μA(x), μB(x)). 
 
It is easy to prove that these operations indeed are equivalent to the corresponding 
set theoretic operations when performed over crisp membership functions. It 
should be noted, though, that of all these operations only the union is always cor-
rect; the others can bring forward a fuzzy set whose minimum is less than 1. 

 
Q.1.12. Draw the membership function of fuzzy set A on Figure 1.10. 
Q.1.13. What is the union of the fuzzy sets presented in Figures 1.10 and 1.11. 
Q.1.14. What is the intersection of the fuzzy sets presented in Figures 1.10 and 
1.11. 
Q.1.15. Draw the membership function of the union of two triangular fuzzy sets 
represented by triplets (2,4,6), for A, and (3,5,7), for B. What is the membership 
function of their intersection? 
Q.1.16. What type of a function is the membership function of the intersection of 
two triangular fuzzy sets? Of two trapezoidal fuzzy sets? Does it always represent 
a fuzzy set?  

1.4.2 Central fuzzy set 

The conventional center and spread concepts can be extended to intervals and 
fuzzy sets. Let us consider an extension of the concept of average to the triangular 
fuzzy sets using the least-squares data recovery approach.   

 
Given a set of triangular fuzzy sets A1, A2, …, AN, the central triangular set A can 
be defined by such a triplet (a, b, c) that approximates the triplets (ai, bi, ci), i = 1, 
2, …, N. The central triplet can be defined by the condition that the average differ-
ence squared,  
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L(a,b,c) = (Σi (ai-a)2 +Σi (bi-b)2 +Σi (ci-c)2 )/(3N) 
 

is minimized by it. Since the criterion L is additive over the triplet’s elements, the 
optimal solution is analogous to that obtained in the conventional case: the optimal 
a is the mean of a1, a2,…,aN; and the optimal b and c are the means of bi and ci, re-
spectively.  

 
Q.1.17. Prove that the average ai indeed minimizes L. A. Let us take the derivative 
of L over a: ∂L/∂a = - 2Σi(ai-a)/N. The first-order optimality condition, ∂L/∂a=0, 
has the average as its solution described. 

 
Q.1.18. Explore the concepts of central trapezoidal fuzzy set and central interval 
in an analogous way.  

Project 1.1. Computing Minkowski metric’s center 

Consider a series xi, i=1,2,…, N, and given a positive p>0, compute such an a 
that minimizes the summary Minkowski criterion, p-th power of the distance,   

 
        Lp = |x1 -a|p + |x2 -a|p +… |xN -a|p                                           (1.7) 

 
When p≠2, no generally applicable analytic expression can be derived for the 

minimizer.  One way to proceed would be using the mechanisms of hill-climbing, 
a strategy of iteratively approaching a (local) minimum point by moving step-by-
step in the anti-gradient direction. Another way is to use a nature-inspired strategy 
by letting a population of admissible solutions to interatively evolve and keeping 
track of the “best” points visited. 

 
We take on both approaches to minimization of Lp:  

(i) anti-gradient iterations, and  
(ii) nature inspired iterations. 

 
(i) Steepest descent computation MC_AG 

 
Before we proceed to computations, let us explore the criterion Lp in (1.7). For 

the sake of simplicity, assume p≥1. Consider that the N values in X are sorted in 
the ascending order so that x1 ≤ x2 ≤ … ≤ xN. Then it is easy to prove, first, that the 
criterion is a convex function shaped like that presented on Figure 1.12, and, sec-
ond, the optimal a-value is indeed between the minimum, x1, and the maximum, 
xN. 
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Figure 1.12. A convex function of a. 

x1                                            xN          a 

 
Assume the opposite: that the minimum is reached outside of the interval, say 

at a > xN. Then, obviously, Lp(x )< Lp(a) because |xN i - xN| < |xi - a| for every 
i=1,2, …, N, and the same holds for the p-th powers of those. As to the convexity, 
let us consider any a in the interval between x1 and xN. Criterion (1.7) then can be 
rewritten as: 

 
( ) ( ) ( )p

i i
i I i I

Lp a a x x a
+ −∈ ∈

= − + − p∑ ∑                             (1.8) 

where I   is set of those indices i for which a > x+ i , and I− is set of such i’s that 
a ≤ xi. The derivative of Lp(a) in (1.8) is equal to: 

 
1( ) ( ( ) ( ) )p

i i
i I i I

Lp a p a x x a
+ −

1p− −

∈ ∈
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and the second derivative, to 
 

2 2( ) ( 1)( ( ) ( )p p
i i
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Lp a p p a x x a

+ −

− −

∈ ∈

′′ = − − + − )∑ ∑          . 

The latter expression is positive for each a value, provided that p>1, which 
proves that Lp(a) is convex. This leads to one more property: assume that Lp(xi*) 
is minimum among all the Lp(xi) values (i=1, 2, …, N), then the minimum of 
Lp(a) lies within the interval (x , x ) where x   is that xi′ i′′ i′ i-value, which is the nearest 
to x at which Lp(x )<Lp(x ). And, similarly, xi* among those on the left of it, i i* i′′   is 
that xi-value, which is the nearest to xi* among those to the right of it, at which 
Lp(x )>Lp(x ). i i*

 
The properties above justify the following steepest descent algorithm applica-

ble at p>1: 
 
MC_FD 

1. Initialize with a0=xi* and a positive learning rate λ. 
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2. Compute a0 – λLp′(a0) according to formula (1.9) and take it as a1 if it 
falls within the interval (xi′, xi′′). Otherwise, decrease λ a bit and repeat 
the step. 

3. Test whether a1 and a0 coincide, up to a pre-specified precision thresh-
old. If yes, halt the process and output a1 as the optimal value for a. If 
not, move on. 

4. Test whether Lp(a1) ≤ Lp(a0). If yes, set a0=a1 and Lp(a0)=Lp(a1), and 
go to (2). If not, decrease λ a bit and go to 2 (without changing a0). 

 
(ii) Nature-inspired computation MC_NI 

 
According to the nature-inspired approach, a population of possible solutions 

rather than a single solution is maintained. In contrast to the classical approaches, 
the improvements here are a matter of a random evolution of the population from 
one generation to another, which is organized in such a way that improvements are 
likely to be acquired. Since this is a 1D search, it is likely that any random moves 
would approximate the optimal point soon enough. The simple algorithm MC_NI 
presented below works quite well in experiments: 
 
1. Determining the area of admissible solutions. Determine an area A of admis-
sible solutions – a set of points which should contain the optimum point(s).  
This is quite easy in this case: as proven above, the optimum lies between the 
minimum lb and maximum rb of the series xi, i=1,2,…, N. Thus, the area is inter-
val (lb,rb). 
 
2. Population setting. Specify the size pe of the population to evolve, say, pe=15, 
and randomly put points s1, s2, …, spe in the admissible area (lb,rb). 
 
3. Elite initialization. Evaluate values of the criterion, frequently referred to as 
the “fitting function”, for each member of the population and store information of 
the best (elite), that is, the minimum, as the only record se to output when needed. 
 
4. Next generation. Modify the population by, first, adding random Gaussian 
noise r: 

s′k = sk +λr 
and, second, by moving all those of the resulting values that went out of the area 
of admissible solutions A back to the area. 

  
 5. Elite maintenance. Evaluate values of the criterion at the new generation, pick 
 the best and worst of them, say sb and sw, and compare with the elite se. If sb is 
 better than se, change the elite for sb. Else, that is, if sb and, more so, sw are worse  
 than se, improve the current population by changing sw in that for the record se. 
  
 6. Stop condition.   If the number of iterations has not reached a pre-specified 
 value, go to (4). Otherwise, output the elite solution.  
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A Matlab code, cm.m, implementing this procedure can be found in the Ap-

pendix. Experiments show that the gradient based procedure of the steepest de-
scent is faster than the nature-inspired one. But the latter works at any p, whereas 
the former only at p>1. 

Project 1.2.  Analysis of a multimodal distribution 

Let us take a look at the distributions of OOP and CI marks at the Student data. 
Assuming that the data file of Table 0.4 is stored as Data\stud.dat, the correspond-
ing MatLab commands can be as follows: 
 
>> a=load(‘Data\stud.dat’); 
>> oop=a(:,7); % column of OOP mark 
>> coi=a(:,8); % column of CI mark 
>> subplot(1,2,1); hist(oop); 
>> subplot(1,2,2); hist(coi);  
 
With ten bins used in MatLab by default, the histograms are on Figure 1.13. 
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Figure 1.13. Histograms of the distributions of marks for OOP (on the left) and CI 
(on he right) from Students data. 
 
The histogram on the left seems to have three humps, that is, three-modal. Typi-
cally, a homogeneous sample should have a unimodal distribution, to allow inter-
pretation of the feature as its modal value with random deviations from it. The 
three modes on the OOP mark histogram require an explanation. For example, one 
may hypothesize that the modes can be explained by the presence of three differ-
ent groups of students represented by their occupations so that IT group should 
have higher marks than BA group whose marks should still be higher than those at 
AN group. 
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To test this hypothesis, one needs to compare distributions of OOP marks at each 
of the occupations. To make the distributions comparable, we need to specify an 
array with boundaries between 10 bins that can be used for each of the samples. 
This array, b, can be computed as follows: 
 
>> r=max(oop)-min(oop);for i=1:11;b(i)=min(oop)+(i-1)*r/10;end; 
 
Now we are ready to produce comparable distributions for each of the occupations 
with MatLab command histc: 
 
>> for ii=1:3;li=find(a(:,ii)==1);hp(:,ii)=histc(oop(li),b);end; 
 
This generates a list, li, of student indices corresponding to each of the three occu-
pations presented by the three binary columns. Matrix hp stores the three distribu-
tions in its three columns. Obviously, the total distribution of OOP, presented on 
the left of Figure 1.13 is the sum of these three columns. To visualize the distribu-
tions, one may use “bar” command in MatLab: 
 
>> bar(hp); 
 
which produces bar histograms for each of the three occupations (see Figure 1.14). 
One can see that the histograms differ indeed and concur with the hypothesis, so 
that IT concentrates in top seven bins and, moreover, it shares the top three bins 
with no other occupation. The other two occupations overlap more, though AN 
takes over on the leftmost, worst marks, positions indeed. 
 
Q.1.19. What would happen if array b is not specified once for all but the histo-
gram is drawn by default for each of the sub-samples? A. The 10 default bins de-
pend on the data range, which may be different at different sub-samples; if so, the 
histograms will be incomparable. 
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Figure 1.14. Histograms of OOP marks for each of three occupations, IT, BA and 
AN, each presented with bars filled in according to the legend. 
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There can be other hypotheses as well, such as that the modes come from different 
age groups. To test that, one should define the age group boundaries first.  

Project 1.3. Computational validation of the mean by 
bootstrapping 

The data file short.dat in Appendix A.5 is a 50x 3 array whose columns are sam-
ples of three data types described in Table 1.6. 
 
Table 1.6. Aggregate characteristics of columns for short.dat array 
 

Data type Normal Two-modal Power law 
Mean 10.27    16.92   289.74 

Real value   1.76   4.97 914.50 Standard 
deviation   0.25   0.70 129.33 NRelated to  

 
The normal data is in fact a sample from a Gaussian N(10,2), that has 10 as its 
mean and 2 as its standard deviation. The other two are Two-modal and Power 
law samples. Their 30-bin histograms are on the left-hand sides of Figures 1.15, 
1.16, and 1.17. Even with the aggregate data in Table 1.6 one can see that the av-
erage of Power law does not make much sense, because its standard deviation is 
more than three times greater than the average. 
 
Many statisticians would argue the validity of characteristics in Table 1.5 not be-
cause of the distribution shapes – which would be a justifiable source of concern 
for at least two of the three distributions – but because of small sizes of the sam-
ples. Is the 50 entities available a good representation of the entire population in-
deed? To address these concerns, the Mathematical Statistics have worked out 
principles based on the assumption that the sampled entities come randomly and 
independently from a – possibly unknown but stationary – probabilistic distribu-
tion. The mathematical thinking would allow then, in reasonably well-defined 
situations, to arrive at a theoretical distribution of an aggregate index such as the 
mean, so that the distribution may lead to some confidence boundaries for the in-
dex. Typically, one would obtain the boundaries of an interval at which 95% of 
the population falls, according to the derived distribution. For instance, when the 
distribution is normal, the 95% confidence interval is defined by its mean 
plus/minus 1.96 times the standard deviation related to the square root of the num-
ber observations, which is 7.07 at N=50. Thus, for the first column data, the theo-
retically derived 95% confidence interval will be 10 ±1.96*2/7.07 =10±0.55, that 
is, (9.45, 10.55)  (if the true parameters of the distribution are known) or 
10.27±1.96*1.76/7.07 = 10.27±0.49, that is, (9.78,10.76) (at the observed parame-
ters in Table 1.1). The difference is rather minor, especially if one takes into ac-
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count that the 95% confidence is a rather arbitrary notion. In probabilistic statis-
tics, the so-called Student’s distribution is used to make up for the fact that the 
sample-estimated standard deviation value is used instead of the exact one, but 
that distribution differs little from the Gaussian distribution when there are more 
than several hundred entities. 
 
In many real life applications the shape of the underlying distribution is unknown 
and, moreover, the distribution is not necessarily stationary. The theoretically de-
fined confidence boundaries are of little value then.  This is why a question arises 
whether any confidence boundaries can be derived computationally by re-
sampling the data at hand rather than by imposing some debatable assumptions. 
There have been developed several approaches to computational validation of 
sample based results. One of the most popular is bootstrapping which will be used 
here in its two basic, “pivotal” and “non-pivotal”, formats as defined in Carpenter 
and Bithell (2000). 
 
Bootstrapping is based on a pre-specified number, say 1000, of random trials. A 
trial involves randomly drawn N entities, with replacement, from the entity set. 
Note that N is the size of the entity set. Since the sampling goes with replacement, 
some entities may be drawn two or more times so that some others are bound to be 
left behind. Recalling that e=2.7182818… is the natural logarithm base, it is not 
difficult to see that, on average, only approximately (e-1)/e=63.2% entities get se-
lected into a trial sample. Indeed, at each random drawing from a set of N, the 
probability of an entity being not drawn is 1-1/N, so that the approximate propor-
tion of entities never selected in N draws is  (1-1/N)N ≈ 1/e =1/2.71828≈ 36.8% of 
the total number of entities. For instance, in a bootstrap trial of 15 entities, the fol-
lowing numbers have been drawn: 8, 11, 7, 5, 3, 3, 11, 5, 9, 3, 11, 6, 13, 13, 9 so 
that seven entities have been left out of the trial while several multiple copies have 
got in.  
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Figure 1.15. The histograms of a 50 strong sample from a Gaussian distribution 
(on the left) and its mean’s bootstrap values (on the right): all falling between 9.7 
and 10.1. 
 
A trial set of a thousand randomly drawn entity indices (some of them, as ex-
plained, would coincide) is assigned with the corresponding row data values from 
the original data table so that coinciding entities get identical rows. Then a method 
under consideration, currently "computing the mean", applies to this trial data to 
produce the trial result. After a number of trials, the user gets enough results to 
represent them with a histogram and derive confidence boundaries from that. 
  
Table 1.7. Aggregate characteristics of the results of 1000 bootstrap trials over 
short.dat array. 
 

Data type Normal Two-mode Power law 
Mean 10.27    16.94   287.54 

 
The bootstrap distributions for each of the three types of data generation mecha-
nism, after 1000 trials, are presented in Figures 1.15, 1.16 and 1.17 on the right 
hand side. 
 
The pivotal validation method is based on the assumption that the bootstrap distri-
bution of means is Gaussian, so that having estimated its average mb and standard  
deviation sb, the 95% confidence interval is estimated as usual, with formula 
mb±1.96*sb =10.24±1.96*0.24=10.24±0.47, which is the interval between 9.77 
and 10.71 – which is very similar to that obtained under the hypothesis of Gaus-
sian distribution – this is no wonder here because the hypothesis is true. 
 
The non-pivotal method makes no assumption of the distribution of bootstrap 
means and uses the empirical bootstrap found distribution to cut it at its 2.5% up-
per and bottom quantiles. To do this, we can sort values of the vector of bootstrap 
means and find the values at its 26th and 975th components, that cut out exactly 
2.5% of the set each. This action produces interval between 9.78 and 10.70, which 
is very close to the previously found boundaries for the 95% confidence interval 
for the mean value of the first sample.. 
 

Original sample   0.25   0.70 129.33 
Bootsrap value   0.25   0.69 124.38 

Standard  
deviation 

Mean, %   2.46   4.05   43.26 
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Figure 1.16. The histograms of a 50 strong sample from a Two-mode distribution 
(on the left) and its mean’s bootstrap values (on the right). 
 
There is theoretical evidence, presented by E. Bradley (1993), to support the view 
that the bootstrap can produce somewhat tighter estimate of the marks deviation 
than the estimate based on the original sample. In our case, we can see in Table 
1.7 that indeed, with the means almost unchanged, the standard deviations have 
been slightly reduced.  

 
Unfortunately, the bootstrap results are not that helpful in analyzing the other 

two distributions: as can be seen in our example, both of the means, the Two-
modal and Power law ones, are assigned rather decent boundaries while, in most 
applications, the mean of either of these two distributions may be considered 
meaningless. It is a matter of applying other data analysis methods such as cluster-
ing to produce more homogeneous sub-samples whose distributions would be 
more similar to that of a Gaussian.   
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Figure 1.17. The histograms of a 1000 strong sample from a Power law distribu-
tion (on the left) and its mean’s bootstrap values (on the right): all falling between 
260 and 560. 

 
The reader is requested to provide pivotal and not-pivotal estimates of 95% 

confidence interval for the other two samples in short.dat dataset (Two-modal and 
Power law). 

Project 1.4.  K-fold cross validation  

Another set of validation techniques utilizes randomly splitting the entity set in 
two parts of pre-specified sizes, the so-called train and test sets, so that the 
method’s results obtained for the train set are compared with the data on the test 
set. To guarantee that each of the entities gets into a train/test set the same number 
of times, the so-called cross-validation methods have been developed.  

 
The so-called K-fold cross validation works as follows. Randomly split entity 

set in K parts Q(k), k=1,…,K, of equal sizes1. Typically, K is taken as 2 or 5 or 10. 
In a loop over k, each part Q(k) is taken as test set while the rest forms the train 
set. A data analysis method under consideration is run over the train set (“training 
phase”) with its result applied to the test set. The average score of all the test sets 
constitutes a K-fold cross-validation estimate of the method’s quality.  

                                                           
1To do this, one may start from all sets Q(k) being empty and repeatedly run a 

loop over k=1:K in such a way that at each step, a random entity is drawn from 
the entity set (with no replacement!) and put into the current Q(k); the process 
halts when no entities remain out of Q(k).  
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The case when K is equal to the number of entities N is especially popu-
lar. It was introduced earlier under the term “jack-knife”, but currently term 
“leave-all one-out” is more popular as better reflecting the idea of the method: N 
trials are run over the entire set except for just each one entity removed from the 
training.  

 
Let us apply the 10-fold cross-validation method to the problem of evaluation 

of the means of the three data sets. First, let us create a partition of our 1000 
strong entity set in 10 non-overlapping classes, a hundred entities each, with ran-
domly assigning entities to the partition classes. This can be done by randomly 
putting entities one by one in each of the 10 initially empty buckets. Or, one can 
take a random permutation of the entity indices and divide then the permuted se-
ries in 10 chunks, 100 strong  

each. For each class Q(k) of the 10 classes (k=1,2,…,10), we calculate the aver-
ages of the variables on the complementary 900 strong entity set, and use these 
averages for calculating the quadratic deviations from them – not from the aver-
ages of class Q(k) - on the class Q(k). In this way, we test the averages found on 
the complementary training set.   

 
The results are presented in Table 1.8. The values found at the original distribu-

tion and with a 10-fold cross validation are similar. Does this mean that there is no 
need in applying the method? Not at all, when more complex data analysis meth-
ods are used, the results may differ indeed. Also, whereas the ten quadratic devia-
tions calculated on the ten test sets for the Gaussian and Two-modal data are very 
similar to each other, those at the Power law data set drastically differ, ranging 
from 391.60 to 2471.03. 

 
Table 1.8. Quadratic deviations from the means computed on the entity set as 

is and by using 10-fold cross validation. 
 
               Data type Normal Two-modal Power law 
           
 
                                  
Q.1.20. What is the bin size in the example of Figure 1.18? A. 2. 
 
 
 
 
Figure 1.18 Range [2,12] divided in five bins. 
 
Q1.21. Consider feature x whose range is between 1 and 10. When the range of 

x is divided in 9 bins (in this case, intervals of the lengths one: [1,2), [2,3),…, 

On set 1.94 5.27 1744.31 Standard  
deviation 10-fold cr.-val. 1.94 5.27 1649.98 

    a=2                                                              b=12
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[9,10]), the x frequencies in the corresponding bins are: 10, 20, 10, 20, 30, 20, 40, 
20, 30. Please answer these questions: 

(i) How many observations of x are available?   
(ii) What can be said about the value of the median of x?  
(iii) Provide the minimum and maximum estimates of the average of 

x.  
(iv) What can be said of 20% quantiles of x?  
(v) What is the distribution of x when the number of bins is 3? What 

is the qualitative variance (Gini coefficient) for this distribution?  
A.  

(i) There are 200 observations. 
(ii) The median lies between 100-th and 101-th values in a sorted order, that 

is, in the 6-th bin, that is, between 6 and 7. 
(iii) The minimum estimate of the mean is computed with the minimal values 

in bins: 
(1*10+2*20+3*10+4*20+5*30+6*20+7*40+8*20+9*30)/200=5.7 

The maximum estimate is calculated using the same formula with all bin values 
increased by 1, which should lead to 5.7+1=6.7. 
(iv) 20% of 200 is 40. That means that the 20% quantile on the left end of x is 

4, while that on the right end must be in the 8-th bin, that is, between 8 
and 9. 

(v) The three-bin distribution will be 40, 70, 90 or, in the relative frequen-
cies, 0.2, 0.35, .45, which leads to the Gini index equal to 1-0.22-0.352-
0.452=0.635. 

 
Q.1.22. Occurrence/co-occurrence. Of 100 Christmas shoppers, 50 spent £60 
each, 20 spent £100 each, and  30 spent £150 each. What are the (i) average, (ii) 
median and (iii) modal spending?  Tip: How one can take into account in the cal-
culation that there are, effectively, only three different types of customers?  
A. Average: First, let us see that the proportions of shoppers who spent £60, £100 
and £150 each are, respectively, 0.5, 0.2 and 0.3. The average can be calculated by 
weighting the expen-ditures by the proportions so that Average=60*0.5 + 100*0.2 
+ 150*0.3 = 30.0 + 20.0 + 45.0 = 95.  

Median: According to definition, the median of 100 numbers is the mid value 
between 50th and 51st entries in their sorted order, which are 60 and 100 in this 
case. Thus the median spending is £80.   

Mode: The modal value is the most likely one, that is, 60.  
 
Q.1.23. Consider two geological formations that are represented by 7 and 5 ore 

specimens, respectively. The mineral contents in formation A is described by vec-
tor a= (7.6, 11.1, 6.8, 9.8, 4.9,  6.1, 15.1), and in formation B, by vector b=(4.7, 
6.4, 4.1, 3.7, 3.9). The average content in A is 8.77 and in B, 4.56. Test the hy-
pothesis that the mineral contents in A is richer than in B (with 95% confidence) 
by using bootstrap. A. Because the sets are quite small, the number of trials should 
be taken rather moderate, not greater than 200. At 200 trials, 95% confidence in-
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terval will be found with boundaries at 6-th and 195-th values in the sorted series 
of bootstrap means. In our computation, this is interval (6.66, 11.09) for A and 
(3.82, 5.44) for B. Since all of the former interval is greater than all of the latter 
interval, the hypothesis can be considered confirmed. (There is a flaw in this solu-
tion, because of some imprecision in the notion that A is richer than B. If we de-
fine that A is richer than B with 95% confidence if a random sample from A is 
richer than a random sample from B in 95% of the cases, then the 95%-intervals 
are not enough – they cover only 0.95*0.95=90.25% of all possible pairs of boot-
strap mean values, which means the hypothesis is proven with 90% confidence. 
Yet if we take a look at the minimum and maximum bootstrap mean values, we 
find that the entire range of means is (6.33, 11.94) for A and (3.82, 5.82) for B, 
which means that the hypothesis is proven now since 5.82<6.33 – within the limits 
of the method.)  

 
Q.1.24. Central triangular fuzzy set. Given three triangular fuzzy sets de-

fined by triples (0,2,3), (0, 3, 4), and (3, 4, 8), determine the corresponding central 
triangular fuzzy set. A. The central triangular fuzzy set is defined by the average 
values such as (0+0+3)/3=1, for the first component; so that it is (1, 3, 5). 

 
Q.1.25. Iris feature distributions. Consider histograms of Iris dataset features 

and demonstrate that two of them are bimodal. A: With a MatLab command like 
>> for k=1:4;subplot(2,2,k);hist(iris(:,k),15);end; 

a figure like Figure 1.19 will appear. Obviously the third and fourth features are 
bimodal. 
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Figure 1.19. Histograms of four Iris dataset featues; (c) and (d) are bimodal. 
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Q.1.26. To run a computational experiment, a student is to randomly generate 
distributions of relative frequencies for a three-category nominal variable. The 
student decides first generate random numbers in interval (0,1) and then make 
them sum up to unity by relating them to thir sum. Thus, for example, random 
numbers 0.7116, 0.1295, 0.6598 are first generated, and then divided by their sum 
1.5009 to produce values 0.4741, 0.0863, 0.4396 totaling to 1. Is it a right way to 
go? A. Not exactly. A bias towards equal frequencies will be created. For exam-
ple, take a look at Figure 1.20(a) presenting the distribution of the first element of 
a pair of frequencies found by the described method: generate a pair of random 
numbers and then divide them by the sum. This distribution is far from that of a 
uniformly random value presented on Figure 1.20 (b). (Can you explain the differ-
ence?) An appropriate way for generating uniformly random frequency triplets 
would be this. First, generate just two random numbers, then sort them in ascend-
ing order and add 0 and 1 into the series: r0=0<r1<r2<r3=1. Then define the fre-
quencies as differences of neighboring values in the series, p =r -rk k k-1 (k=1,2,3). 
For example, if  0.8775, 0.5658 were first generated, then the frequencies would 
be defined as  p1 =0.5658, p2 =0.8775 - 0.5658=0.3117, and p3 =1- 0.8775= 
0.1225. This method is easily extendable to any number of categories. 
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Figure 1.20. Histograms of a 100000 strong random sample of (a) the first 

element of a random pair after division by the pair summary value, and (b) just a 
random number.  

1.5  Summary 

This chapter presents summaries of one-dimensional data, first of all, histo-
grams, central points and spread evaluations. Two perspectives are outlined: one is 
the classical probabilistic and the other of approximation, naturally extending into 
the data recovery approach to supply a decomposition of the data scatter in the ex-
plained and unexplained parts.   
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A difference between categorical and quantitative features is pointed out: the 

latter admit averaging whereas the former not. This difference is somewhat 
blurred at binary features especially the so-called dummies, 1/0 variables repre-
senting individual categories – they can be considered quantitative too. 

 
Some attention is given to modeling uncertainty by using intervals and fuzzy 

sets, but not much pursued. In fact, most of further methods can be extended to 
these more complex data types. 

 
Several projects are presented to show how questions can arise and get compu-

tational answers. Computational intelligence and cross validation approaches are 
involved.  
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Abstract    

The Chapter outlines several important characteristics of summarization and 
correlation between two features, and displays some of the properties of those. 
They are: 

- linear regression and correlation coefficient for two quantitative vari-
ables;  

- tabular regression, correlation ratio, decomposition of the quantitative 
feature scatter, and nearest neighbor classifier for the mixed scale case; 
and  

- contingency table, Quetelet index, statistical independence, and Pearson’s 
chi-squared for two nominal variables; the latter is treated as a summary 
correlation measure, in contrast to the conventional view of it as a crite-
rion of statistical independence.  

 
They all are applicable in the case of multidimensional data as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 78

2.0 General 

Analysis of two features on the same entity set can be of interest assuming that 
the features are related in such a way that certain changes in one of them tend to 
co-occur with changes in the other. Then the relation – if observed indeed – can be 
used in various ways, of which two types of application are typically discernible: 
those oriented at  

(i) prediction of values of one variable from those of the other;  
(ii) addition of the relation to the knowledge of the domain by interpret-

ing and explaining it in terms of the existing knowledge.  
Goal (ii) is a subject in the discipline of knowledge bases as part of the so-

called inferential approach, in which all relations are assumed to have been ex-
pressed as logical predicates and treated within a formal logic system – this ap-
proach will not be described here. We concentrate on another approach, referred to 
as the inductive one and related to the analysis of what type of information the 
data can provide with respect to the goals (i) and (ii). Typically, the feature whose 
values are to be predicted is referred to as the target variable and the other as the 
input variable. Examples of goal (i) are: prediction of an intrusion attack of a cer-
tain type (Intrusion data) or prediction of exam mark (Student data) or prediction 
of the number of Primary schools in a town whose population is known (Market 
town data). One may ask: why bother – all numbers are already in the file! Indeed, 
they are. But in the prediction problem, the data at hand are just a sample from a 
large population so that it is used as a training ground for devising a decision rule 
for prediction of the target feature at other, yet unobserved, entities. Typically, the 
input feature is readily available while the target feature is not. As to the goal (ii), 
the data usually are just idle empirical facts not necessarily noticeable unless they 
are generalized into a decision rule. 
 

The mathematical structure and the visual portrayal of the problem differ de-
pending on the type of feature scales involved, which leads us to considering all 
possible cases:  

(1) both features are quantitative,  
(2) one feature is quantitative, the other categorical, and  
(3) both features are quantitative.  
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2.1  Two quantitative features case 

P.2.1.1 Scatter-plot, linear regression and correlation coefficients 

In the case when both features are quantitative, the three following concepts are 
popular: scatter plot, correlation and regression. We consider them in turn by us-
ing two features from the Market towns dataset, Population Resident.and Number 
of Primary Schools. The data are taken from Table 0.4 (see below an extract for 
four towns out of 45): 

                        Pop (x)        PSchools (y)  (x,y)-point 
Tavistock   10222  5  (10222,5) 
Bodmin      12553  5  (12553,5) 
Saltash     14139  4         (14139,4) 
Brixham     15865  7  (15865,7)  

 
Scatter plot is a presentation of entities as 2D points in the plane of two pre-

specified features. On the left-hand side of Figure 2.1, a scatter-plot of Market 
town features Pop (Axis x) and PSchools (Axis y) is presented. 
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Figure 2.1.  Scatter plot of PopRes versus PSchools in Market town data. The 

right hand graph includes a regression line of PSchools over PopRes. 
One can think that these two features are related by a linear equation y=ax+b 

where a and b are some constant coefficients, referred to as the slope and inter-
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cept, respectively, because the number of schools should be related to the number 
of children which is related to the number of residents. This equation is referred to 
as the linear regression of y over x. Obviously, most relations are not necessarily 
that simple because they also depend on other factors such as school sizes, popula-
tion’s age, etc. It would be a miracle if one equation fitted well all 45 towns. The 
possible inconsistencies in the equation can be modeled as additive errors, or re-
siduals. The slope a and intercept b are taken in such a way that the inconsisten-
cies of the equation on the 45 towns are minimized.  

 
When a linear regression equation is fitted, its validity should be checked. A 

valid equation can be used for both (i) prediction and (ii) description.  
 
The Galton-Pearson theory of linear regression involves a useful and very 

popular parameter, the correlation coefficient that shows the extent of linearity in 
the relation between the two features. Its square, referred to as the determination 
coefficient, can be used for a quick check of the validity of the regression: it 
shows the proportion of the variance of y that is taken into account by the regres-
sion. The correlation coefficient between the two features, Pop and PSchools, is 
0.909. The correlation coefficient, in general, ranges between -1 and 1, and a value 
close to 1 or –1 indicates a high extent of the linear dependence between the fea-
tures. In physics or chemistry, a high value of the correlation coefficient is rather 
usual; in social sciences, rather not – that is, the current features are highly related 
indeed.  

Most other features in Market town data – such as the numbers of Post offices 
or Doctors – are also highly related to Pop feature, but not the number of Farmers 
markets. This latter feature appears to be binary here: a town either has a farmers 
market or not. The low value of the correlation coefficient, just below 0.15, shows 
that the size of the town does not much matter in this part of the world: a farmers 
market is as likely in a small town as it is in a larger town. 

A low or even zero value of the correlation coefficient does not necessarily 
mean “no relation at all”, but rather just “no linear relation”. A zero correlation 
coefficient may hide a different type of functional relation, as shown on Figure 
2.2, which presents three different cases of the zero correlation. Only one of these, 
that on the left, case is genuine – there is no relation between x and y according to 
the picture indeed. Each of the other two cases relates to a rather high association 
between x and y. Specifically, the figure in the middle refers to a quadratic de-
pendence and the figure on the right, to a split between two subsamples of highly 
linear but inverse relations. 
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Figure 2.2. Three scatter-plots corresponding to zero or almost zero correlation 

coefficient ρ; the case on the left: no relation between x and y; the case in the 
middle: a non-random quadratic relation y=(x-2)2+5; the case on the right: two 
symmetric linear relations, y=2x-5 and y=-2x+3, each holding at a half of the enti-
ties. 
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Figure 2.3. Histograms of the residuals, the differences between values of 

PSchool as observed and those computed from Pop by using equation (2.1), with 5 
bins (on the left) and 10 bins (on the right). The dents in the finer histogram can be 
attributed to the fact that the sample of 45 instances is too small to have 10 bins. 

 
Then the regression equation, estimated according to formulas (2.4-2.6) in sec-

tion F2.1.2, is this: 
 
PSchool=0.401*Pop+0.072    (2.1) 

 
where Population resident (Pop) is expressed in thousands to make the slope the 
thousand times greater than it would be if population is expressed in the absolute 
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numbers. The slope expresses how much target changes when the input changes 
by 1. Because the target’s values are integers, the value of slope can be rephrased 
as follows: the growth of population in a town by 2.5 thousand would lead, on av-
erage, to building one more primary school.    

P.2.1.2 Validity of the regression 

A regression function built over a data set should be validated. Three types of 
validity checks can be considered:  

(a) The proportion of the variance of target variable taken into account by the 
regression, the determination coefficient: the greater the determination the better 
the fit. 

(b) The confidence intervals of regression parameters – their ranges can give an 
idea of how stable the regression is. 

(c) The direct testing of the accuracy of prediction both on data used for build-
ing the regression and data not used for that. 

 
Worked example 2.1. Determination coefficient  
Consider feature PSchools as target versus Pop as input, in Market Data (Figure 2.1). 

Th termination coefficient, in the e correlation coefficient between them is 0.909. The de
case of linear regression, is its square, that is, 0.9092= 0.826, which shows that the linear 
dependence on Pop decreases the variance of PSchools by 82.6%, a rather high value.  

 
If the determination coefficient is not that high, still the hypothesis of linear re-

lat n may hold – depending on the distribution of residuals, that is, differences io
between the observed values of PSchool and those computed from Pop according 
to equation (2.1). This distribution should be Gaussian or approximately Gaussian, 
so that the principle of maximum likelihood and formulas derived from it are ap-
propriate. The distribution for the case under consideration is presented on Figure 
2.3. It is similar to a Gaussian distribution indeed, at the 5 bin histogram. The his-
togram with 10 bins is less so because it is somewhat dented – probably the sam-
ple is too small for this level of granularity: on average, only 4-5 entities fall in 
each of the bins. 

 
A more straightforward validity test can be performed without any statistic the-

ory  all – by purely computational means using the so-called boostrapping which  at
is a procedure for obtaining a multitude of random estimates of the parameters of 
interest by using random samples from the dataset as illustrated in worked exam-
ple 2.2.  

 
Worked example 2.2. Bootstrap validity testing 
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Consider the linear regression of PSchools over PopRes in equation (2.1) in the previous 
section. How stable are its slope and intercept regarding change of the sample? This can be 
tested by using bootstrap. One bootstrap trial involves three stages: 
 
1. Randomly choose, with replacement, as many entities as there are in the sample – 45 in 
this case. Here is the sequence of indices of the entities randomly drawn with replacement 
while writing this text: r = {26,17,36,11,29,39,32,25,27,26,29,4,4,33,10,1,5, 
45,17,16,13,5,42,43,28,26,35,2,37,44,6, 39, 33,21,15, 11,33,1,44,30,26,25,5,37,24}. Some 
indices made it into the sample more than once, most notably 26 – four times, whereas 
many others did not make it into the sample at all – altogether, 16 entities such as 3,7,8 are 
absent from the sample. The proportion of the absent indices is 16/45= 0.356, which is 
rather close to the theoretic estimate 1/e=0.3679 derived in Project 1.3. 
 
2. Take “resampled” versions of Pop and PSchools as their values on the elements drawn 
on step 1. 
 
3. Find values of the slope and intercept for the resampled Pop and PSchools and store 
them. 

 
The MatLab computation steps are similar to those in Project 2.1. After 400 trials the 

stored slopes and intercepts form distributions presented as 20 bin histograms on Figure 
2.4, a and b, respectively. After 4000 trials, the respective histograms are c and d. One can 
easily see the smoothing effect of the increased number of trials on the histogram shapes – 
at 4000 trials they do look Gaussian. 

 
The boostrapping trials give a diversity needed for estimating the average values of the 

slope and intercept. Moreover, one can draw confidence boundaries for the values.  
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Figure 2.4. Histograms of the distributions of the slope, on the left, and intercept, on the 

right, found at 400 (on top) and 4000 (below) bootstrapping trials on PopResid, expressed 
in thousands, and PSchool features in Market town data. 
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Table 2.1. Parameters of the linear regression of PoPResid over PSChool found on the 
original set, as well as on 400 and 4000 trials. The latter involves the average values as well 
as the lower and upper 2.5% quantiles. 

        40Regression Set 0 trials        4000 trials 
M % M %

.401 
pt 

Parameters ean 2.5% 97.5 ean 2.5% 97.5
Slope 0 0.399 0.296 0.486 0.398 0.303 0.488 
Interce 0.072 0.089 -0.34 0.623 0.092 -0.40 0.594 

 
How can one obtain, say, 95% confidence boundaries? According to the non-pivotal 

method, lower and upper 2.5% quintiles are cut out from the distribution in a symmetric 
way: 95% of the observations fall between the quantiles. For the case of 400 trials, 2.5% 
equals 10, so that the lower quantile corresponds to 11th  and the upper quantile to 390th 
elements in the sorted set of values. For the case of 4000 trials, 2.5% equals 100: these 
quantiles correspond to 101st and 3900th elements of the sorted sets. They are shown in Ta-
ble 2.1 at both of the cases, 400 and 4000 trials. One can see that these provide consistent 
and rather tight boundaries for the slope: it is between 0.303 and 0.488 in 95% of all trials, 
according to 4000-trial data, and more or less the same at 400-trial data. The values of in-
tercept are distributed with a greater dispersion and provide for a worsened accuracy.  
Symmetric 95% confidence intervals for the intercept are [-0.343,0.623] at 400 trials and [-
0.400,0.594]  at 4000 trials.  

 
Q2.1. How a pivotal bootstrapping rule can be applied here? This would pro-

vide more stable evaluations than empirical distributions. The standard deviations 
of the slope and intercept are 0.0493 and 0.2606, respectively, at 400 boostrapping 
trials; they are somewhat smaller, 0.0477 and 0.2529, at the 4000 trials. Can one 
derive from this a symmetric 95% confidence interval for the slope or intercept? 
Tip: in a Gaussian distribution, 95% of all values fall within interval mean ± 
1.96∗std. This is the so-called pivotal bootstrapping method. 

 
Q.2.2. Can you give an estimate of the level of variance of the differences be-

tween PSchool observed and computed values? 
  
A final validity test of the regression equation is probably the toughest one – by 

the prediction error (see worked example 2.3).  
 
Worked example 2.3. Prediction error of the regression equation 
 
Compare the observed values of PSchool with those computed through Pop according to 

equation (2.1). Table 2.2 presents a few examples taken from both ends of the sorted Pop 
feature. 

Table 2.2. Observed numbers of Primary schools versus those predicted from the Popu-
lat

e.     PS comp.     Pop 
     

ion resident data on some Market towns. 
PS obs.      PS comp.     Pop PS obs
1               0.89        2040 2                2.35        5676 
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2               0.97        2230   
2               1.06        2452   
2               1.19        2786   
1  1.54        3660 

2                2.90        7044  
4                4.12      10092   
7                6.44      15865   
4                7.05      17390   

 
On average, the predictions are close, but, in some cases, are less so. One can easily es-

timate the relative error, which is (1-0.89)/1=11% at the first case, (2-0.97)/2=51.5% at the 
second case, etc. The average relative error of equation (2.1) is equal to 30.7%. Can it be 
made smaller? On the first glance, no, it cannot, because equation (2.1) minimizes the error. 
But, the error minimized by equation (2.1) is the average quadratic error, not the relative er-
ror under consideration. The two errors do differ, and equation (2.1) is not necessarily op-
timal with regard to the relative error.  

 
The classical optimization theory has virtually nothing to propose for the 

minimization of the relative error – this criterion is neither linear, nor quadratic, 
nor convex. Yet the evolutionary optimization approach can be applied to the task. 
This approach uses a population of solutions randomly evolving, iteration after it-
eration, in the search for better solutions as explained in Project 2.2. Applying the 
algorithm from that project to minimize the criterion of relative error, one can find 
a different solution, in fact, a set of solutions each leading to the average relative 
error of 26.4%, a reduction of 4.3 points, one seventh of the relative error of equa-
tion (2.1). The new solution is PSchool= 0.28*PopRes + 0.33 expressing a smaller 
rate of increase in school numbers at the growth of population. 

F2.1 Linear regression: Formulation 

F.2.1.1 Fitting linear regression  

Let us derive parameters of linear regression. Given target feature y and predic-
tor x at  N entities (x1,y1), (x2, y2),…, (xN, yN), we are interested at finding a linear 
equation relating them so that 

 
y=ax + b       (2.2) 

The exact fit can ine on occur only if all pairs (xi,yi) belong to the same straight l
(x,y)-plane, which is rather unlikely on real-world data. Therefore, equation (2.2) 
will have an error at each pair (xi,yi) so that the equation should be rewritten as  

 
  i i iy =ax  + b + e      (i=1,2,…,N)   (2.2) 
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where e  are referred to as errors or residuals. The problem is of determining the i
two parameters, a and b,  in such a way that the residuals are least-squares mini-
mized, that is, the average square error 

 
L(  = Σi ei   = Σi (yi - axi - b)2/N ,  (2.3) a,b) 2

 
reaches its minimum ver all possible a and b, given x  and y  (i=1, 2, …,N). This  o i i
minimization problem is easy to solve with the elementary calculus tools.  
 
Indeed L(a,b) is a “bottom down” parabolic function of a and b, so that its mini-
mum corresponds to the point at which both partial derivatives of L(a,b) are zero 
(the first-order optimality condition): 

 
∂L/∂a = 0   and   ∂L/∂b = 0 
 

Leaving the task of actually finding the derivatives to the reader as an exercise, let 
us focus on the unique solution to the first-order optimality equations defined by 
formulas (2.4), for a, and (2.6), for b: 

 
 a = ρ σ(y) /σ(x)     (2.4)  

where 
 

 ρ = [Σi (xi – mx)(yi-my)] ⁄[Nσ(x)σ(y)]  (2.5) 
 

is the so-called correlation coefficient and mx, my are means of xi, yi, respectively; 
 

  b = my –amx    (2.6) 
 

By putting these opti al a and b into (2.3), one can express the minimum criterion m
value as 

 
 Lm(a,b) = σ2(y)(1- ρ2)    (2.7) 

 
The equation (2.2) is referred to as the linear regression of y over x, index ρ in 

(2.4) and (2.5) as the correlation coefficient, its square ρ2  in (2.7) as the determi-
nation coefficient, and  the minimum criterion value Lm  in (2.7) is referred to as 
the unexplained variance. 



 87 

F2.1.2 Correlation coefficient and its properties 

The meaning of the coefficients of correlation and determination, in the data 
recovery framework of data analysis, is provided by equations (2.3)-(2.7). Here 
are some formulations.  

  
Property 1. Determination coefficient ρ2 shows the rate of decrease of the 

variance of y after its linear relation to x has been taken into account by the regres-
sion (follows from (2.7)). 

 
Property 2. Correlation coefficient ρ ranges between -1 and 1, because ρ2 is 

between 0 and 1, as follows from the fact that value Lm  in (2.7) cannot be negative 
because the items in its expression (2.3) are all squares. The closer ρ  to either 1 or 
-1, the smaller are the residuals in the regression equation. For example, ρ=0.9 
implies that y’s unexplained variance Lm is 1-ρ2 = 19% of the original value. 

 
Property 3. The slope a is proportional to ρ according to (2.4); a is positive or 

negative depending on the sign of ρ.  If ρ=0, the slope is 0: in this case, y and x are 
referred to as not correlated.  

  
Property 4. The correlation coefficient ρ does not change under shifting and 

rescaling of x and/or y, which can be seen from equation (2.5). Its formula (2.5) 
becomes especially simple if the so-called  z-scoring has been applied to standard-
ize both x and y.   

 
To perform z-scoring over a feature, its mean m is subtracted from all the val-

ues and the results are divided by the standard deviation σ: 
 
 x′i= (xi – mx)/σ(x)    and  y′ i = (yi – my)/σ(y),                      i=1,2,…, N  
 

Using the z-score standardization, formula (2.5) can be rewritten as 
 

ρ = Σi x′i y′i ⁄N =<x’,y’>/N   (2.5’) 
 

where < x′, y′ > denotes the inner product of vectors  x′ =( x′i)  and y′=( y′i). 
 

The next property refers to one of the fundamental discoveries by K. Pearson,  
an interpretation of the correlation coefficient in terms of the bivariate Gaussian 
distribution. A generic formula for the density function of this distribution, in the 
case in which the features have been pre-processed by using z-score standardiza-
tion described above, is  

f(u, ∑)= Cexp{-uT∑-1u/2}    (2.8) 
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where u =(x, y) is a two-dimensional vector of the two variables x and y under 
consideration and  ∑ is the so-called correlation matrix  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ

1
1
ρ

ρ  

In formula (2.8), ρ is a parameter with a very clear geometric meaning. Con-
sider a set of points u = (x,y) on (x,y)–plane making function f(u, ∑) in (2.8) equal 
to a pre-specified constant. Such a set makes the values of uT∑-1u constant too. 
That means that a constant density set of points u=(x, y) must satisfy equation x2-
2ρxy+y2=const. This equation is known to define a well-known quadratic curve, 
the ellipsis. At  ρ=0 the equation becomes an equation of a circle, x2+ y2=const, 
and the greater the difference between ρ and 0, the more skewed is the ellipsis, so 
that at ρ =± 1 the ellipsis becomes a bisector line y = ± x + b because the left part 
of the equation makes a full square, in this case,   x2± 2xy+y2=const, that is, (y ± 
x)2 = const. The size of the ellipsis is proportional to the constant: the greater the 
constant the greater the size. 

 
Property 5. The correlation coefficient (2.5) is a sample based estimate of the 

parameter ρ in the Gaussian density function (2.8) under the conventional assump-
tion that the sample points (yi,xi) are drawn from a Gaussian population randomly 
and independently.  

 
This striking fact is behind a long standing controversy. Some say that the us-

age of the correlation coefficient is justified only when the sample is taken from a 
Gaussian distribution, because the coefficient has a clear-cut meaning only in this 
model. This logic seems somewhat overly restrictive. True, the usage of the coef-
ficient for estimating the density function is justified only when the function is 
Gaussian. However, when trying to linearly represent one variable through the 
other, the coefficient has a very different meaning in the approximation context, 
which has nothing to do with the Gaussian distribution, as expressed above with 
equations (2.4)-(2.7).  

F2.1.3 Linearization of non-linear regression 

Non-linear dependencies also can be fit by using the same criterion of minimiz-
ing the square error. Consider a popular case of exponential regression, that is, 
representing correlation between target y and predictor x as y=aebx where a and b 
are unknown constants and e the base of natural logarithm. Given some a and b, 
the average square error is calculated as 

 
2 2 2E=([y1-aexp(bx )]  +…  +[y1 N-aexp(bx )] )/N = ΣN i [yi-aexp(bxi)] /N    (2.9) 
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There is no method that would straightforwardly lead to a globally optimal solu-
tion of the problem of minimization of E in (2.9) because it is too complex func-
tion of the unknown values. This is why conventionally the exponential regression 
is fit by what should be referred to as its linearization: transforming the original 
problem to that of linear regression. Indeed, let us take the logarithm of both parts 
of the equation that we want to fit, y=aebx. The resulting equation is 
ln(y)=ln(a)+bx. This equation has the format of linear equation, z=αx+β, where 
z=ln(y), α=b and β=ln(a). This leads to the following idea. Let us take the target 
be  z=ln(y) with its values zi=ln(yi). By fitting the linear regression equation with 
data xi and zi, one finds optimal α and β, so that the original exponential parame-
ters are found as a=exp(β) and b=α. These values do not necessarily minimize 
(2.9), but the hope is that they are close to the optimum anyway. Unfortunately, 
this may be very wrong sometimes as the material in Project 2.2. clearly demon-
strates.  

 
 

Q.2.3. Find the derivatives of L over a and b and solve the first-order optimality 
conditions. 

 
Q.2.4. Derive the optimal value of L in (2.7) for the optimal a and b. 

 
Q.2.5. Prove or find a proof in the literature that any linear equation y=ax+b cor-
responds to a straight line on Cartesian xy plane for which a is the slope and b in-
tercept. 

 

Q. 2.6. Find the inverse matrix Σ-1  for . A. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ

1
1
ρ

ρ

1 21
(1 ).

1
ρ

Σ ρ
ρ

− −⎛ ⎞
= −⎜ ⎟−⎝ ⎠

 

C2.1 Linear regression: Computation 

     Regression is a technique for representing the correlation between x and y as a 
linear function (that is, a straight line on the plot), y = slope*x + intercept where 
slope and intercept are constants, the former expressing the change in y when x is 
added by 1 and the latter the level of y at x=0. The best possible values of slope 
and intercept  (that is, those minimizing the average square difference between 
real y's and those found as slope*x+intercept) are expressed  in MatLab, accord-
ing to formulas (2.4)-(2.6), as follows: 
 



 90

>> rho=corrcoef(x,y);  
%2×2 matrix whose off-diagonal entry is correlation coefficient  
>> slope = rho(1,2)*std(y)/std(x);  
>> intercept = mean(y) - slope*mean(x);  
 
Here rho(1,2) is the Pearson correlation coefficient between x and y (2.5) that can 
be determined with MatLab operation "corrcoef" which leads to an estimate of the 
matrix Σ above. 

Project 2.1.  2D analysis, linear regression and bootstrapping 

Let us take the Students data table as a 100 x 8 array a in MatLab, pick any two 
features of interest and plot entities as points on the Cartesian plane formed by the 
features. For instance, take Age as x and Computational Intelligence mark as y: 
 
>> x=a(:,4); % Age is 4-th column of array "a" 
>> y=a(:,8); % CI score is in 8-th column of "a" 
 
Then student 1 (first row) will be presented by point with coordinates x=28 and 
y=90 corresponding to the student’s age and CI mark, respectively. To plot them 
all, use command: 
 
>> plot(x,y,'k.')  
% k refers to black colour, “.” dot graphics; 'mp' stands for magenta pentagram;  
% see others by using "help plot" 
 
Unfortunately, this gives a very tight presentation: some points are on the borders 
of the drawing. To make the borders stretched out, one needs to change the axis, 
for example, as follows: 
 
>> d=axis; axis(1.2*d-10); 
 
This transformation is presented on the right part of Figure 2.5. To make both 
plots presented on the same figure, use "subplot" command of MatLab: 
 
>> subplot(1,2,1) 
>> plot(x,y,'k.'); 
>> subplot(1,2,2) 
>> plot(x,y,'k.'); 
>> d=axis; axis(1.2*d-10); 
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Figure 2.5: Scatter plot of features “Age” and “CI score”; the display on the right 
is a rescaled version of that on the left. 
 
Whichever presentation is taken, no regularity can be seen on Figure 2.5 at all. 
Let's try then whether anything better can be seen for different occupations. To do 
this, one needs to handle entity sets for each occupation separately: 
 
>> o1=find(a(:,1)==1); % set of indices for IT 
>> o2=find(a(:,2)==1); % set of indices for BA 
>> o3=find(a(:,3)==1); % set of indices for AN 
>> x1=x(o1);y1=y(o1); % the features x and y at IT students 
>> x2=x(o2);y2=y(o2); % the features at BA students 
>> x3=x(o3);y3=y(o3); % the features at AN students 
 
Now we are in a position to put, first, all the three together, and then each of these 
three separately (again with the command "subplot", but this time with four win-
dows organized in a two-by-two format, see Figure 2.6). 
 
>> subplot(2,2,1); plot(x1,y1, '*b',x2,y2,'pm',x3,y3,'.k');% all three  
>> d=axis; axis(1.2*d-10); 
>> subplot(2,2,2); plot(x1,y1, '*b'); % IT plotted with blue stars 
>> d=axis; axis(1.2*d-10); 
>> subplot(2,2,3);  plot(x2,y2,'pm'); % BA plotted with magenta penta-
grams 
>> d=axis; axis(1.2*d-10); 
>> subplot(2,2,4); plot(x3,y3,'.k'); % AN plotted with black dots 
>> d=axis; axis(1.2*d-10); 
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Of the three occupation groups, some potential relation can be seen only in the AN 
group: it is likely that "the greater the age the lower the mark" regularity holds in 
this group (black dots in the Figure 2.4’s bottom right). To check this, let us utilize 
the linear regression. 
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Figure 2.6. Joint and individual displays of the scatter-plots at the occupation 

categories (IT star, BA pentagrams, AN dots). 
 

Linear regression equation, y = slope*x + intercept, is estimated by using MatLab, 
according to formulas (2.4)-(2.6), as follows: 
 
>>cc= corrcoef(x3,y3);rho=c(1,2);% producing rho=-0.7082 
>> slope = rho*std(y3)/std(x3); % this produces slope =-1.33; 
>> intercept = mean(y3) - slope*mean(x3); % this produces intercept = 98.2; 
 
Since we are interested in group AN only, we apply these commands at AN-
related values x3 and y3 to produce the linear regression as y3= 98.2 - 1.33*x3. 
The slope value suggests that every year added to the age, in general decreases the 
mark by 1.33, so that aging by 3 years would lead to the loss of 4 mark points. 
Obviously, care should be taken to draw realistic conclusions. 
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Altogether, the regression equation explains rho^2=0.50=50% of the total vari-
ance of y3 – not too much, as is usual in social and human sciences. 
 
Let us take a look at the reliability of the regression equation with bootstrapping, 
the popular computational experiment technique for validating data analysis re-
sults that was introduced in Project 1.3.  
 
Bootstrapping is based on a pre-specified number of random trials, for instance, 
5000. Each trial consists of the following steps: 
 
(i) randomly selecting an entity N times, with replacement, so that the same entity 
can be selected several times whereas some other entities may be never selected in 
a trial. (As shown above in Project 1.3, on average only 62% entities get selected 
into the sample.) A sample consists of N entities because this is the number of en-
tities in the set under consideration. In our case, N=31. One can use the following 
MatLab command: 
 
>> N=31;ra=ceil(N*rand(N,1)); 
% rand(N,1) produces a column of N random real numbers, between 0 and 1 each.  
% Multiplying this by N stretches them to (0,N) interval; ceil rounds the numbers 
up to integers. 
 
(ii) the sample ra is assigned with their data values according to the original data 
table: 
 
>>xt=xx(ra);yt=yy(ra);  
% here xx and yy represent the predictor and target, respectively; 
% they are x3 and y3, respectively, which can be taken into account with assign-
ments  
% xx=x3; and yy=y3. 
 
so that coinciding entities get identical feature values.  
 
(iii) a data analysis method under consideration, currently "linear regression", that 
basically computes the rho, the slope and the intercept, applies to this data sample 
to produce the trial result.  
 
To do a number (5000, in this case) of trials, one should run (i)-(iii) in a loop: 
 
>> for k=1:5000; ra=ceil(N*rand(N,1)); 
      xt=xx(ra);yt=yy(ra); 
      cc=corrcoef(xt,yt);  
      rh(k)=cc(1,2);  
      sl(k)=rh(k)*std(yt)/std(xt); inte(k)=mean(yt)-sl(k)*mean(xt); 
   end 
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% the results are 5000-strong columns rh (correlations), sl (slopes)  
% and inte (intercepts) 
 
Now we can check the mean and standard deviation of the obtained distributions. 
Commands 
 
>>mean(sl); std(sl) 
 
produce values -1.33 and 0.24. That means that the original value of slope=-1.33 
is confirmed with the bootstrapping, but now we have obtained its standard devia-
tion, 0.24, as well. Similarly mean/std values for the intercept and rho are com-
puted. They are, respectively, 98.2 / 9.0 and -0.704 / 0.095. 
 
We can plot the 5000 values found as 30-bin histograms (see Figure 2.7): 
 
>> subplot(1,2,1);  hist(sl,30) 
>> subplot(1,2,2); hist(in,30) 
 
Command subplot(1,2,1) creates one row consisting of two windows for plots and 
puts the follow-up plot into the first window (that on the left). Command sub-
plot(1,2,2) changes the action into the second window which is on the right. 
 
Table 2.4. Parameters of the bootstrap distributions and pivotal and non-pivotal 
boundaries 
 

Pivotal boundaries  Non-pivotal 
boundaries 

 Mean St. dev. 

Left          Right Left               
Right                  

Slope 
Intercept 
Corr. coef. 

-1.337 
98.510 
-0.707 

0.241 
9.048 
0.094 

-1.809 
80.776 
-0.891 

-0.865 
116.244 
- 0. 523 

-1.800         -
0.850 

80.411       
116.041 
-0.861         -0.493 

 
To derive the 95% confidence boundaries for the slope, intercept and correlation 
coefficient, one may use both pivotal and non-pivotal methods. 
 
The pivotal method uses the hypothesis that the bootstrap sample is indeed a ran-
dom sample from a Gauusian distribution. Parameters of this distribution for slope 
are determined with the following commands: 
 
>> msl=mean(sl; ssl=std(sl); 
 
Since 95% of the Gaussian distribution fall within interval of plus-minus 1.96*std, 
the 95% confidence boundaries are derived, for the slope, as follows: 
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>> lbsl=msl – 1.96*ssl; rbsl=msl + 1.96*ssl 
 
The non-pivotal estimates require no such a hypothesis and are based on the boot-
strap distribution as is. One just sorts all the values and takes 2.5% quantiles on 
both extremes of the range: 
 
>> ssl=sort(sl); lbn=ssl(126);rbn=ssl(4875); 
 
Indeed, we need to cut out 5% items from the sample, to make a 95% confidence 
interval. Since 5% of 5000 is 250, conventionally divided in two halves, this re-
quires cutting off first 125 observations as well as the last 125 observations of the 
presorted list of the bootstrap values, which brings us to ssl(126) and ssl(4875) as 
the non-pivotal boundaries for the slope value. 
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Figure 2.7. 30-bin histograms of the slope (left) and intercept (right) after 5000 
bootstrapping trials. 
 
All these estimates are presented in Table 2.4. The pivotal and non-pivotal esti-
mates do not fall too far apart. Either can be taken as parameters of the boundary 
regressions.   
 
This all can be visualized by, first, defining the three regression lines, the regular 
one and two corresponding to the lower and upper estimate boundaries, respec-
tively, with 
 
>> y3reg=slope*x3+intercept; 
>> y3regleft=lbsl*x3+lbintercept; 
>> y3regright=rbsl*x3+rbintercept; 
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and then plotting the four sets onto the same figure Figure 2.8.: 
 
>> plot(x3,y3,'*k',x3,y3reg,'k',x3,y3regleft,'r',x3,y3regright,'r') 
%  x3,y3,'*k' presents student data as black stars; x3,y3reg,'k' presents the   
%  real regression line in black  
%  x3,y3regleft,'g' and x3,y3regright,'g' for boundary regressions in green  
 
The red lines on Figure 2.8 show the boundaries of the regression line for 95% of 
trials. 
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Figure 2.8. Regression of CI score over Age (black line) within occupation cate-
gory AN with  boundaries covering 95% of potential biases due to sample fluctua-
tions. 

Project 2.2.  Non-linear and linearized regression: a nature-
inspired algorithm 

In many domains the correlation between features is not necessarily linear. For 
example, in economics, processes related to the inflation over time are modeled by 
using the exponential function. A similar way of thinking applies to the processes 
of growth in biology. Variables describing climatic conditions obviously have a 
cyclic character; etc. The power law in social systems is nonlinear too.  

 
Consider, for example, a power law function y=axb where x is predictor and y 

predicted variables whereas a and b are unknown constant coefficients. Given the 
values of x  and y  on a number of observed entities i= 1,…, N, the power law re-i i
gression problem can be formulated as the problem of minimizing the summary 
squared or absolute error over all possible pairs of coefficients a and b. There is no 
method that would straightforwardly lead to a globally optimal solution of the 
problem because minimizing a sum of many exponents is a complex problem. 
This is why conventionally the power law regression is fit by transforming it into a 
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linear regression problem. Indeed, the equation of the power law regression, taken 
with no errors, is equivalent to the equation of linear regression with log(x) being 
predictor and log(y) target: log(y)=blog(x)+log(a).This gives rise to the very 
popular strategy of linearization of the problem. First, transform xi and yi to 
vi=log(xi) and  zi=log(yi) and fit the linear regression equation for given vi and zi; 
then convert the found coefficients into those of the original exponential function. 
This strategy seems especially suitable since the logarithm of a variable typically 
is much smoother so that the linear fit is better under the logarithm transformation. 

 
There is one caveat, however: the fact that found coefficients are optimal in the 

linear regression problem does not necessarily imply that the converted exponents 
are necessarily optimal in the original problem.  This we are going to explore in 
this project. 
 

Nature-inspired optimization is a computational intelligence approach to mini-
mize a non-linear function. Rather than look and polish a single solution to the op-
timization problem under consideration, this approach utilizes a population of so-
lutions iteratively evolving from generation to generation, according to rules 
imitating a real-world evolutionary process. The rules typically include: (a) ran-
dom changes from generation to generation such as “mutations” and “crossovers” 
in earlier, genetic, algorithms, and (b) policies for selecting and maintaining the 
best found solutions, the “elite”. After a pre-specified number of iterations, the 
best solution among those observed is reported as the outcome.  

 
To start the evolution, one should first define a restricted area of admissible solu-
tions so that no member of the population may leave the area. This warrants that 
the population will not explode by moving solutions to the infinity.  Under the hy-
pothesis of a power law relation y=abx, for any two entities i and j, the following 
equations should hold: zi=b∗vi+c and zj=b∗vj+c where c=log(a), zi=log (yi) and 
vi=log(xi). From these, b and c can be expressed as follows: b=(zi-zj)/(vi-vj), 
c=(vi∗zj – vj∗zi)/(vi-vj), which may lead to different values of b and c at different i 
and j. Denote bm and bM the minimum and the maximum of (zi-zj)/(vi-vj), and cm 
and cM the minimum and maximum of  (vi∗zj – vj∗zi)/(vi-vj) over those i and j for 
which vi-vj≠0. One would expect that the admissible b and c should be within 
these boundaries, which means that the area of admissible solutions should be de-
fined by the inequalities (bm,cm) ≤ (b,c) ≤ (bM,cM). Since the optimal values of 
(b,c) should be around the averages of the ratios above, that is, lie deep inside the 
area between their maxima and minima, it helps to speed up the computation if 
one takes only those pairs (i,j)  at which the values of vi, vj and zi, zj are not too 
close to 0 so that their logarithms are not that far away, and, similarly, the differ-
ences between them should not be not that small nor that high. This approach is 
implemented in MatLab code ddr.m in Appendix A4. 
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For the step of producing the next generation, let us denote the population’s p×2 
array by f, at the current iteration, and by f′, at the next iteration. The transition 
from f to f′ is done in three steps. First, take the row of mean values within the 
columns of f and repeat it p times in a p×2 array mf. Then make a Gaussian ran-
dom move:  
                                         fn=f + randn(p,2).*mf/20 
Here randn(p,2) is a p×2 array of (pseudo) random numbers generated according 
to Gaussian distribution N(0,1) with 0 expectation and 1 variance. The symbol .* 
denotes the operation of multiplication of corresponding elements in matrices, so 
that (aij).*(bij) is a matrix whose (i,j)-th elements are products aij*bij. This ran-
dom matrix is scaled down by mf/20 so that the move accounts for about 5% (one 
twentieth) of the average f values. 
 
Since the move is to be restricted within the admissibility area, any a-element 
(first column of fn) which is greater than aM, is to be changed for aM, and any a-
element smaller than am is to be changed for am. Similar trimming applies to b-
elements. Denote result by fr. 
 
At the next step, take  a p×2 array el whose rows are the same stored elite solution 
and arrive at the next generation f′ by using the following “elite mix”: 

f′= 0.7fr+0.3el 
The elite mix moves all population members in the direction of the best solution 
found so far by 30%, which has been found work well in the examples of our in-
terest. 
 
This procedure is implemented in MatLab code nlr.m that relies on ddr.m at step 1 
and a subroutine, delta, for evaluating the fitness (see A4 in Appendix). 
 

Consider now this experiment. Generate predictor x as a 50-long vector of ran-
dom positive entries between 0 and 10, x=10*rand(1,50), and define y =2*x1.07 
with the normal additive noise 2*N(0,1) where 0 is the mean and 1 the variance, 
which is suppressed when overly negative, according to the Matlab code line 

 
>>for ii=1:50;yy=2*x(ii)^1.07 +2*randn;y(ii)=max(yy,1.01);end; 
 
When using the conventional linearized regression model by linearly mapping 

log(x) to log(y), to extract b and a (as the exponent of the found c) from this, the 
program llr.m implementing this approach produces a = 3.0843 and b = 0.8011 
leading to the averaged squared error y-axb equal to 4.41, so that the standard error 
is 2.10, about 20% of the mean y value, 10.1168. It is not only that the error is 
high, but also a wrong law is identified. The generated function y stretches x out 
(b>1), whereas the found function stretches x in (b<1).  

 
When minimizing the averaged squared error y-axb of the original model di-

rectly by using the code nlr.m implementing the nature-inspired algorithm, the 
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values are a = 2.0293 and b = 1.0760 leading to the average squared error of 
0.0003 and the standard error of 0.0180. In contrast to the values found at the lin-
earized scheme, the parameters a and b here are very close to those generated.  

 
This obviously considerably outperforms the conventional procedure. Similar 

results can be found at different values of the noise variance. 
 
Case-study 2.1. Growth of investment 
 
Let us apply a similar approach to the following example involving variables x 

and y defined over a period of 20 time moments as presented in Table 2.5. 
  
Table 2.5. Data of investment y at time moments x from 0.10-2.00. 
 
x  0.10   0.20  0.30  0.40  0.50  0.60   0.70  0.80  0.90  1.00  1.10  1.20  1.30  1.40  1.50   

1.60    1.70    1.80    1.90   2.00 
 

y  1.30  1.82  2.03  4.29  3.30  3.90  3.84  4.24  4.23  6.50  6.93  7.23  7.91  9.27  9.45  
11.18 12.48  12.51  15.40  15.91 

 
Variable x can be thought of as related to the time periods whereas y may rep-

resent the value of a fund. In fact, the components of x are numbers from 1 to 20 
divided by 10, and y is obtained from them in MatLab according to formula 
y=2*exp(1.04*x)+0.6*randn where randn is the normal (Gaussian) random vari-
able with the mathematical expectation 0 and variance 1.  

 
Let us, first, try a conventional approach of finding the average growth of the 

fund during all the period. 
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Figure 2.9. Plot of the original pair (x,y) in which y is a noisy exponential func-

tion of x (on the left) and plot of the pair (x,z) in which z=ln(y). The plot on the 
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right looks somewhat straighter indeed, though the correlation coefficients are 
rather similar, 0.970 for the plot on the left and 0.973 for the plot on the right. 

 
The average growth of the investment according to these data is conventionally 

expressed as the root 19, or power 1/19, of the ratio y /y20 01, that is, 1.14. This es-
timates the average growth as 14% per period – which is by far greater than 4% in 
the data generating model. 

 
Let us now try to make sense of the relation between x and y by applying the 

conventional linearization strategy to this data. 
 
The strategy of linearization of the exponential equation outlined in section 

F2.1.3  leads to values 1.1969  and 0.4986 for  b and c, respectively, to produce 
a=ec=1.6465 and b=1.1969 according to formulas there. As one can see, these dif-
fer from the original a=2 and b=1.04 by the order of 15-20%. The value of the 
squared error here is E=13.90. See Figure 2.9 representing the data. 

 
Let us now apply the nature inspired approach to the original non-linear least-

squares problem. 
 
The program nlrm.m implementing the evolutionary approach described in Pro-

ject 2.2 found a=1.9908 and b= 1.0573. These are within 1-2% of the error from 
the original values a=2 and b=1.04. The summary squared error here is  E=7.45, 
which is by far smaller than that found with the linearization strategy.  
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Figure 2.10. Two fitting exponents are shown, with stars and dots, for the data 

in case study 2.1. 
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The two found solutions can be represented on the scatter-plot graph, see Fig-
ure 2.10. One can see that the linearized version has a much steeper exponent, 
which becomes visible at later periods. 

 
Q.2.7. Consider a binary feature defined on seven entities so that it is category A 
on the first three of them, and  category B on the next four. Let us draw two 
dummy 1/0 variables, xA and xB, corresponding to each so that xA=1 on the first 
three entities and xA=0 on the rest, whereas xB=0 on the first three entities and 
xB=1 on the rest. What can be said of the correlation coefficient between xA and 
xB? A. The correlation coefficient between xA and xB is -1 because xA+xB=1 for 
all entities so that xA= - xB+1.  

 
Q. 2.8. Extend the nature inspired approach to the problem of fitting a linear re-
gression with a nonconventional criterion such as the average relative error de-

||1
1

∑
=

N

i
ii yeNfined by formula . 

 
Case-study 2.2. Correlation between Iris sepal length and width 
 

Take x and y from the Iris set in Table 0.3 as the Sepal’s length and width, re-
spectively.  

A scatter plot of x and y is presented on the left part of Figure 2.11. This is a 
loose cloud of points which looks similar to that on the left part of Figure 2.2, of 
no correlation. Indeed the correlation coefficient value here is not only very small,  
−0.12, but also negative, which is somewhat odd, because intuitively the features 
should be positively correlated as reflecting the size of the same flower. 
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Figure 2.11. Scatter plot of Sepal length and Sepal width from Iris data set (Table 
0.3), as a whole on the left and taxon-wise on the right. Taxon 1 is presented by 
circles, taxon 2 by triangles, and taxon 3 by dots. 
 

To see a particular reason for the low, and negative, correlation, one should 
take into account that the sample is not homogeneous: the Iris set consists of 50 
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specimens of each of three different taxa. When the taxa are separated (see Figure 
2.11 on the right), the positive correlation is restored. The correlation coefficients 
are 0.74, 0.53 and 0.46 for taxon one, two and three, respectively. Here is a nice 
example of the negative effect of the non-homogeneity of the sample on the data 
analysis results.  

2.2 Mixed scale case: Nominal feature versus a quantitative one 

P2.2.1 Box-plot, tabular regression and correlation ratio 

Consider x a categorical feature on the same entities as a quantitative feature y, 
such as Occupation and Age at Students data set. The within-category distribu-
tions of y can be used to investigate the correlation between x and y. The distribu-
tions can be visualized by using just ranges as follows: present categories with 
equal-size bins on x axis, draw two lines parallel to x axis to present the minimum 
and maximum values of y (in the entire data set), and then present the within cate-
gory ranges of y as shown on Figure 2.12. 

 
 
 
 
 
 
 
 
  IT                           BA                         AN         Occupation 

Age 
51 
 
 
20 

 
Figure 2.12. Graphic presentation of within category ranges of Age at Student 

data. 
 
The correlation between x and y is higher when the within-category spreads are 

tighter because the tighter the spread within an x-category, the more precise is 
prediction of y at it. Figure 2.13 illustrates an ideal case of a perfect correlation – 
all within-category y-values are the same leading to an exact prediction of Age 
when Occupation is known. 

 
Figure 2.14 presents another extreme, when knowledge of an Occupation cate-

gory does not lead to a better prediction of Age than when the Occupation is un-
known. 
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A simple statistical model extending that for the mean will be referred to as 

tabular regression. The tabular regression of quantitative y over categorical x is a 
table comprising three columns corresponding to: 

(1) Category of  x 
(2) Within category mean of y 
(3) Within category standard deviation of y 

 
 
 
 
 
 
 
 
Figure 2.13. In a situation of ideal correlation, with zero within-category vari-

ances, knowledge of the Occupation category would provide an exact prediction 
of the Age within it. 

 IT                        BA                        AN           Occupation 

Age 
     51 

 
20 

 
The number of rows in the tabular regression thus corresponds to the number of 

x-categories; there should be a marginal row as well, with the mean and standard 
deviation of y on the entire entity set. 
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Figure 2.14. Wide within-category distributions: the case of full variance 

within categories in which the knowledge of Occupation would give no informa-
tion of Age. 

 
Worked example 2.4. Tabular regression of Age (quantitative target) over 

Occupation (categorical predictor) in Students data  
 
Let us draw a tabular regression of Age over Occupation in Table 2.6. The table sug-

gests that if we know the Occupation category, say IT, then we can safely predict the Age 
as being 28.2 within the margin of plus/minus 5.6 years. With no knowledge of the Occupa-
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tion category, we could only say that the Age is on average 33.7 plus/minus 8.5, a some-
what less precise estimate. 

 
The table can be visualized in a manner similar to Figures 2.12-14, this time presenting 

the within category averages by horizontal lines and the standard deviations by vertical 
strips (see Figure 2.15). 

 
Table 2.6 Tabular regression of Age over Occupation in Students data 
 

Occupation Age Mean Age StD 
IT 28.2 5.6 
BA 39.3 7.3 
AN 33.7 8.7 

Total 33.7 8.5 
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Figure 2.15. Tabular regression visualized with the within-category averages 

and standard deviations represented by the position of solid horizontal lines and 
vertical line sizes, respectively. The dashed line’s position represents the overall 
average (grand mean). 

 
One more way of visualization of categorical/quantitative correlation is the so-

called box-plot. The within-category spread is expressed here with a quantile (per-
centile) box rather than with the standard deviation. First, a quintile level should 
be defined such as, for instance, 40%, which means that we are going to show the 
within-category range over only 60% of its contents by removing 20% off of both 
its top and bottom extremes. These are presented with box’ heights such as on 
Figure 2.16; the full within-category ranges are shown with whiskers.  

 
Worked example 2.5. Box-plot of Age at Occupation categories at Students 

data 
 
With the quantile level specified at 40%, at the category IT, Age ranges between 20 and 

39, but if we sort it and remove 7 entities of maximal Age and 7 entities of minimal Age 
(there are 35 students in IT so that 7 makes 20% exactly), then the Age range on the re-
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maining 60% is from 22 to 33. Similarly, Age 60% range is from 32 to 47 on BA, and from 
25 to 44 on AN (see box heights on Figure 2.16). The whiskers reflect 100% within cate-
gory ranges, which are intervals [20,39], [27, 51] and [21, 50], respectively. 
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Figure 2.16. Box-plot of the relationship between Occupation and Age with 20% quan-

tiles; the box heights reflect the Age within-category 60% ranges, whiskers show the total 
ranges. Within-box horizontal lines show the within category averages. 

 
The box-plot proved useful in studies of quantitative features too: one of the 

features is partitioned into a number of bins that are treated then as categories. 
 
Consider now one more tabular regression, this time of the OOProgramming 

mark over Occupation (Table 2. 7) 
   
Table 2.7. Tabular regression OOProg/Occupation 
 

Occupation OOP Mean OOP StD 
IT 76.1 12.9 
BA 56.7 12.3 
AN 50.7 12.4 
Total 61.6 16.5 

 
A natural question emerges: In which of the tables the correlation is greater, 2.6 

or 2.7? 
This can be addressed with an integral characteristic of the tabular regression, 

the correlation ratio. This coefficient scores the extent at which the within group 
variance is smaller on average than the variance of the feature on the set before the 
split – a determination coefficient for the tabular regression.  

 
Worked example 2.6. Correlation ratio 
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Let us address the question above: Is the correlation in Table 2.6 is greater than in Table 
2.7?  

 
Correlation ratios for the tables computed by using formulas (2.14) and (2.12) are:  
Occupation/Age    28.1% 
Occupation/OOProg    42.3% 

 
The drop in variance is greater at the second table, that is, the correlation between Occupa-
tion and OOProgramming is greater than that between the former and Age. 
 
Q.2.9 In Table 2.7, there is a positive relation between the Occupation and the OOP mark, 
with the largest mark, 76.1, going to IT and the smallest mark, 50.7, to AN. There is no 
such a relation in Table 2.6 in which AN’s Age is in the middle between that at the other 
two groups. Is it that feature of Table 2.7 that leads to a higher correlation ratio?  A. No; the 
order of means is irrelevant at the tabular regression. The correlation ratio is higher at Table 
2.7 than at Table 2.6 because of the tighter boundaries on the quantitative feature within the 
groups in Table 2.7. 

F2.2.1 Tabular regression: Formulation 

Given a quantitative feature y, with no further information, its aver-
age, / | |i

i I

y y
∈

= ∑ I , would represent a proper summarization of the data. If, 

however, a set of categories of another variable, x, is additionally present, a more 
detailed summarization can be provided: the within category averages.  Let Sk de-
note the set of entities falling in k category of x, then the within-category averages 
are / | |

k

k i
i S

y y S
∈

= ∑ k
. 

This can be considered the least-squares solution to the model of tabular re-
gression which extends the data recovery model for the average on page … as fol-
lows. Find a set of ck values such that the summary square error L= ∑ i∈I ei

 2 is 
minimized, where ei=yi - c  according to equations k

 
yi= c  +ek i  for all  i∈Sk    (2.11) 

 
The equations underlie the tabular regression and are referred to sometimes as 

the piece-wise regression. It is not difficult to prove that the optimal ck in (2.11) is 
the within category average ky , which implies that the minimum value of L is 

equal to 2

1
(

k

K

m i
k i S

L y
= ∈

= −∑∑ )ky . By dividing and multiplying the interior sum by 

the number of elements in Sk, |Sk|, we can see that in fact Lm=Nσ2
w where σ2

w is 
the average within category variance defined as  
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       σ2

w= ∑k pkσ2
k                             (2.12) 

 
where pk = |S |/N is the proportion of category k and σ2

k k the variance of y within  
S .  k

 
To further analyze this, consider equation                     

2 2 2( ) 2i k i k iy y y y y y− = + −                              k  
and sum it up over all i∈Sk. This would lead to the summary right-hand item 

being similar to that in the middle, thus producing 
22 2( ) | |

k k

i k i k k
i S i S

y y y S y
∈ ∈

− = −∑ ∑ . Summing up these equations over k and moving 

the right-hand item to the other side of the equation, would lead to the following 
decomposition: 

2 2

1 1
| | ( )

k

K K

i k k i
i I k k i S

y S y y y
∈ = = ∈

= + −∑ ∑ ∑∑                   2
k

     (2.13) 

Note that the right-hand item in (2.13) is the summary least-squares criterion of 
model in (2.11) Lm. This allows us to interpret the equation (2.13) as a decomposi-
tion of the scatter of variable y, the item on the left, in two parts on the right: the 
explained part, in the middle, and the unexplained part L .  m

2| |k kS yThe explained part sums up contributions of individual categories k, . 
The value of the contribution is proportional to both the category frequency and 
the squared value – the greater the better. 

 
Another expression of decomposition (2.13) can be obtained under the assump-

tion that variable y is centered, so that its mean is 0, by relating it to N: 

2 2

1 1

K K

k k k k
k k

p y p                           2σ σ
= =

= +∑ ∑         (2.14) 

where σ2 is the variance of y, the item on the right the minimum value  Lm/N  from 
(2.12), and the  item in the middle, the weighted summary squared distance be-
tween the grand mean y ky=0 and within-category means . 

 
Equation (2.14) is very popular in statistics as the decomposition of the vari-

ance into the within-group variance, the item on the right, and the between-group 
variance, the item in the middle, as the base of a popular method for comparison 
of within-category means which is referred to as ANOVA (ANalysis Of VAri-
ance). In the context of the tabular regression model (2.11) viewed as a data re-
covery model, the original decomposition (2.13) of the quantitative feature scatter 
into part explained by the nominal feature and part remaining unexplained is more 
appropriate, as will be seen later in sections 3.4  and 5.2. Viewed in this light, de-
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composition (2.14) shows that the category k contribution to the total variance of y 
is proportional to its frequency and the squared difference between within-
category mean yky and grand mean =0. 

 
The correlation ratio shows the relative drop in the variance of y when it is pre-

dicted according to model (2.11) or, in other words, the relative proportion of the 
explained part of the variance. Correlation ratio is usually denoted by η2 and can 
be defined by the following formula: 

η2
 = 1 –  σ2

w/σ2     (2.15) 
 
The definition implies the following properties: 
- The range of  η2 is between 0 and 1. 
- Correlation ratio η2 = 1 when all within-category variances σ2

k  are zero (that 
is, when y is constant within each group S ). k

- Correlation ratio η2 = 0 when all σ2
k  are of the order of  σ2 . k

 
Q.2.10. Consider two quantitative features x and y. Divide the range of x in five 
equal-sized bins to produce a categorical variable xc. Is there any relation between 
the correlation coefficient between x and y and the correlation ratio coefficient be-
tween xc and y? A. None, the former can be greater than the latter in some cases, 
and smaller in some others. 

2.2.2 Nominal target 

In the case when it is the quantitative variable that is predictor while the categori-
cal variable is the target, one can use all the wealth of methods developed for pat-
tern recognition or machine learning. The problem may be stated variously de-
pending on the learning task. A machine learning task typically assumes a training 
dataset for deriving a rule that can be applied to entities from a testing dataset, un-
der the assumption that structures of the training and testing datasets are similar – 
see a discussion in Chapter 3. All features under consideration are assumed known 
on both of the sets, except that the categories are not known on the testing dataset. 
 
A most popular problem to address would be like this: given a value of the quanti-
tative predictor on an entity, tell the category of the target feature on the entity. 
We present two approaches on this. 
 
2.2.2.1 Nearest Neighbor classifier 
 
One of the most popular is the so-called Nearest-Neighbor classifier. It is applica-
ble at any data admitting distances or (dis)similarities between entities. The NN 
classifier works as this: find, in the training dataset, an entity which is the nearest 
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to that under consideration and extrapolate its category to the entity in question. 
One can take a look at the results of application of the NN classification rule to 
two feature pairs, one from Intrusion data set, and the other from Student dataset, 
in the follow up examples. The results are very different – the former, in Table 
2.8, is very successful whereas the other, in Table 2.10, not. An explanation to this 
is the difference in the strength of correlation between the two variables – very 
strong in one case and rather weak in the other (see Tables 2.9 and 2.11). 
 
The NN classifier can be easily extended to the so-called k-NN classifier; the lat-
ter usually supplies the category supported by a majority of the k nearest 
neighbors of the entity in question. This classifier may also lead to the so-called 
“reject option” – giving no answer when there is no clear-cut majority. 
 
Worked example 2.7. Nearest neighbor classifier 
 
Consider two features from the dataset Intrusion: the type of attack Att, the target, and the 
number of connections to the same host as the current one in the past two seconds, SH. To 
make the method work fast, first, sort entities in the ascending order of SH. Take a random 
10-element subset (upper row in Table 2.8) along with their Att categories (the second row) 
and SHCo values (the third row). Now take the entities whose SH values are nearest 
neighbors of those in the third row: these SH values are in the fourth row, and look at their 
Att categories (the bottom row). A striking success: all ten are predicted correctly!  
 
Table 2.8. Applying NN classifier SH⇒Attack to a random subsample of the Intrusion 
dataset. 

Random sample 9      29    37    51    63    70    72    80    86    89 
True target category apa  nor   nor  nor   nor  nor  nor    sai    sai   sai 
Predictor’s value PV 24    10     1     14     2      3      1   482   482  483 
Nearest Neighbor’s PV 23    11     1     13     2      3      1   482   482  482 
NN predicted category apa  nor   nor  nor   nor  nor  nor    sai    sai   sai       

 
Q.2.11. Build a tabular regression of the SHCo over Attack categories and find the correla-
tion ratio.A. See Table 2.9. 

 
Table 2.9. Tabular regression of SHCo over Attacks in Intrusion data: comparatively 

small within-category standard deviations. 
 

Attack Number     Mean  Standard 
deviation 

  23             33.61         12.13 Apache 
  11           484.64          8.42 Saint 
  10           508.40          5.13 Smurf 
  56               5.13          5.59 Normal 

Total 100           114.75      198.09 
Correlation ratio 0.988 
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Q.2.12. Apply NN classifier to predict Occupation from CI Mark over Student dataset. A. 
See Table 2.10. 

 
Table 2.10. Applying NN classifier CI⇒Occupation to a random subsample of the Student 
dataset; wrong category assignments are highlighted in bold 

Random sample 4     11    24    42    44    61      87     89    94   100  
True target category IT    IT    IT    BA  BA  BA     AN   AN   AN AN 
Predictor’s value PV 72   65    54    65    44    62      72     48    34    45 
Nearest Neighbor’s PV 72   65    54*  65    44     62**  72    47    35*  45* 

BA  AN  IT   AN   BA   BA     BA  BA   AN  AN   NN predicted category 
* - of two other entities having different categories that with the matching 
one has been selected; 
** - of several entities, the most frequent category has been selected. 

 
Q.2.13. Build tabular regression of the CI mark over Occupation in Student data 
and find the correlation ratio. A. See Table 2.11. 

 
Table 2.11. Tabular regression of CI mark over Occupation in Student data: 

comparatively high within-category standard deviations 
 Occupation Number     Mean  Standard deviation  IT   35             70.57        12.73      BA   34             54.79       10.60  AN   31            53.35        16.29   Total 100            59.87        15.37  Correlation ratio 0.250            
 

2.2.2.2 Interval predicate classifier 
 
Another, more human friendly, classifier can be built in terms of quantitative 

feature x intervals. To predict a target feature category k, such a classifier would 
rely on an interval predicate x(a(k),b(k)) which is true if and only if the value of x 
is between a(k) and b(k). Then an interval predicate rule would be a production 
x(a(k),b(k)) ⇒k. Consider, for example, “Saint” Attack in Intrusion data: there are 
11 cases of this type and all, except one, have SHCo values 482 or 483. Thus, the 
interval predicate rule SHCo(482,483)⇒ Saint would make only 9% of errors. 

 
How one can infer which of the categories are more likely to be well covered 

by an interval predicate rule? One of the proposals is to rely on category contribu-
tions to the variance of x in (2.13), 2(k k )p x x− , in the denotations of this section, 

where p kxx is proportion of entities in category k, is grand mean and k  is within 
category k mean. The mechanism making sense of this proposal is illustrated on 
Figure 2.17 (top): the further away the within-category mean is, the more plausible 
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that the entire category is further away. Yet, in many cases, many entities in a 
category fall apart from their averages thus leading to errors in the interval based 
prediction (Figure 2.17, bottom). 

 
Figure 2.17. A group of white circles falls apart from the rest, on the top, and 

much intermixes with the rest, on the bottom. 
 
Worked example 2.8. Category contributions for interval predicate pro-

ductions 
 
Consider the same features Att and SHCo from Intrusion dataset as those considered in 

Worked example 2.7 and determine the Att category contributions according to formula 

(2.13), 2(k kp x x− )  (see Table 2.12). 

 
Table 2.12. Category contributions according to formula (2.13) 
 

Attack Proportion     Mean  Contribution 
0.23             33.61            1514.3 Apache 
0.11           484.64          15049.8 Saint 
0.10           508.40          15496.0 Smurf 
0.56               5.13            6729.9 Normal 

Total 1.00           114.75          38790.0 
 
With respect to the data in Table 2.12, one can try to build interval predicate based pro-

ductions for the largest contributing Saint and Smurf categories. We already observed that 
SH(482,483)⇒ Saint makes 9% error, which is a false negative. This is caused by a SH 
value of 510 corresponding to Saint at 90-th row of the Intrusion data table – this does not 
satisfy the production’s subject. Now one can see that rule SH(490,512) ⇒ Smurf would 
fail only once too, on the same observation – but this time this would be a false positive, 
satisfying the subject but being not Smurf. The next contributing category, lagging far be-
hind, is “Normal” corresponding to the range of x values from 1 to 28 which overlaps the 
range (16, 42) of x values corresponding to Apache category. Yet the rule SH(1,15)⇒ 
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Normal is true for 53 of 56 cases, the three false negative errors making about 5% only. The 
rule SHCo(16,42)⇒ Apache has the same three cases as false positives. 

 
Q.2.14. Build a category contribution table like Table 2.12 for CI mark and 

Occupation features in Students dataset. A. See Table 2.13. 
 
Table 2.13. Occupation category contributions to CI Mark. 
 

Occupation Proportion  Mean  Squared diff.    Contribution 
IT 
BA 
AN 

0.35            70.574         4980.327     1743.114    
0.34            54.794         3002.395      1020.814 
0.31            38.774         1503.438        466.066 

Total 1.00            55.350           
 
A rather successful usage of interval based productions in Worked example 2.8 

is due to the tight correlation between SH and Attack. In a less comfortable situa-
tion, such as that of pair CI mark – Occupation at Student dataset, the interval 
based descriptions make no sense at all. Consider the most contributing category 
IT – its CI mark range is from 53 to 90. If one takes the entire range to make it 
into rule CI(53,90)⇒ IT, this would make no false negatives at all. Yet there are 
22 entities of BA category and 15 of AN category whose CI mark falls within (53, 
90) interval too, totaling to 37 false positive errors! One can try to somewhat re-
duce the interval predicate range, to lessen the false positive errors, with the price 
of admitting some false negatives. Consider, for example,  CI(62,90)⇒ IT rule to 
admit 12 false negative errors as well as 10 BA and 11 AN false positives, a drop 
to 33 errors altogether – quite a high error rate! Yet the interval based rules follow 
human way of thinking, which may lead to overall acceptance of such a rule, pos-
sibly amended by another feature interval added to the subject, even with the price 
of a high error rate. 

2.3 Two nominal features case  

P2.3 Analysis of contingency tables: Presentation 
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P.2.3.1 Deriving conceptual relations from statistics 

To analyze interrelations between two nominal features, they are cross-
classified in the so-called contingency table. A contingency table has its rows cor-
responding to categories of one feature and columns to categories of the other fea-
ture, with the entries reflecting the counts of entities falling in the overlap of the 
corresponding row and column categories.  

 
Worked example 2.9. Contingency table on Market towns data 
 
To cross-classify features Banks and Farmer’s Market on Market towns data, we first 

need to categorize the quantitative feature Banks. Consider, for example, the four-category 
partition of the range of Banks feature at Market towns set presented in Table 2.13. 

 
Table 2.13. Definition of Ba categories on the Market town dataset. 
  
 Category Definition Notation 
 10+ Ba ≥10 1 
 4+ 10>Ba≥4 2 
 2+ 4>Ba≥2  3 
 1- Ba=0 or 1 4 
 
These categories are cross-classified with FM “yes” and “no” categories in Table 2.14. 

Besides the cross-classification counts, the table also contains summary within category 
counts, the totals, on the margins of the table, the last row and last column – this is why 
they are referred to as marginal frequencies. The total count balances the sheet in the bot-
tom-right corner.  

 
Table 2.14 Cross classification of the Ba categories with FM categories.  
 

 Bank/Building Society categories  
FarmMarket 10+ 4+ 2+ 1- Total 
Yes 2 5 1 1 9 
No 4 7 13 12 36 
Total 6 12 14 13 45 

 
The same contingency data converted to relative frequencies by relating them to the to-

tal number of entities are presented in Table 2.15. 
 
Table 2.15. BA/FM cross-classification relative frequencies, per cent. 
 
FM      |   Ba 10+ 4+ 2+ 1- Total 

Yes 4.44 11.11 2.22 2.22 20 
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No 8.89 15.56 28.89 26.67 80 
Total 13.33 26.67 31.11 28.89 100 

 
Q.2.15. Build a contingency table for features “Protocol-type” and “Attack type” 
in Intrusion data. A. See Table 2.16. 

 
Table 2.16. Protocol/Attack contingency table for Intrusion data 
 

Category Apache Saint Smurf Norm Total 
Tcp 23 11 0 30 64 
Udp 0 0 0 26 26 
Icmp 0 0 10 0 10 
Total 23 11 10 56 100 

 
A contingency table can be used for assessment of correlation between two sets 

of categories. The highest level of correlation is that of a conceptual association. A 
conceptual association may exist if a row, k, has all its entries, not marginal of 
course, except just one, say l, equal to 0, which would mean that all of the extent 
of category k belongs to the column category l. The data, thus, indicate that cate-
gory k implies category l.  

 
Worked example 2.10. Equivalence and implication from a contingency 

table 
Such are rows “Udp” and “Icmp” in Table 2.16. There is a perfect match in this table: a 

row category k= “Icmp” and a column category l= “surf”, that contains the only non-zero 
count. No other combination (k, l′) or (k′, l) is possible according to the table. In such a 
situation, one may claim that, subject to the sampling error, category l may occur if and 
only if k does, that is, k and l are equivalent. 

 
A somewhat weaker, but still very much valuable is the case of “Udp” row in Table 

2.16.  It appears, Udp protocol implies “Norm” column category –  a no-attack situation, 
though there is no equivalence here because the “Norm” column contains another positive 
count, in row “Tcp” .  

 
Case study 2.3. Trimming contingency data: a bad option 
  
Unfortunately, there are no zeros in Table 2.14: thus, no conceptual relation between the 

number of Banks and the presence of a Farmer’s market. But some of the entries are really 
close to 0, which may make us tempted to trim the data a bit. Imagine, for example, that in 
row “Yes” of Table 2.14, two last entries are 0, not 1s. This would imply that a Farmers 
Market may occur only in a town with 4 or more Banks. A logical implication, that is, a 
production rule, “If BA is 4 or more, then a Farmer’s market must be present”, could be de-
rived then from thus modified table. One may try taking this path and cleaning the data of 
smaller entries, by removing corresponding entities from the table of course, to not obscure 
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our “vision” of the pattern of correlation. Thus trimmed Table 2.17 is obtained from Table 
2.14 by removing just 13 entities from “less popular” entries. This latter table expresses, 
with no exception, a very simple conceptual statement “A town has a Farmer’s market if 
and only if the number of Banks in it is 4 or greater”. However nice the rule may sound, let 
us not forget the cost of the trimming which is the 13 towns, almost 30% of the sample, that  

 
Table 2.17. A trimmed BA/FM cross classification “cleaned” of 13 towns, to sharpen 

the view. 
 

 Number of Banks/Build. Societies   
FMarket 10+ 4+ 2+ 1- Total  

Yes 2 5 0 0 7  
No 0 0 13 12 25  
Total 2 5 13 12 32  

 
have been removed as those not fitting the stated perspective. Such a data doctoring borders 
with forgery – one of the reasons for a famous quip attributed to B. Disraeli, a celebrated 
British Prime Minister of XIX century: “There are three gradations of lies: lies, damned lies 
and statistics.”  The issue of sample adjustment so far has received no reasonable solution, 
even with respect to outliers – values falling way beyond the feature range one would ex-
pect normally. Anyway, the conclusion of the trimming exercise is that one should try find-
ing ways of expressing conceptual relations without much doctoring the sample.  

P.2.3.2 Capturing relationships with Quetelet indexes 

Quetelet index provides for a strategy for visualization of correlation patterns in 
contingency tables without removal of “not-fitting” entities. In 1832, A. Quetelet, 
a founding father of statistics, proposed to measure the extent of association be-
tween row and column categories in a contingency table by comparing the local 
count with an average one.  

 
Let us consider correlation between the presence of a Farmer’s Market and the 

category “10 or more Banks” according to Table 2.15. We can see that their joint 
probability / frequency is the entry in the corresponding row and column:  
P(Ba=10+ & FM=Yes)=2/45=4.44%  (joint probability / frequency rate). Of the 
20% entities that fall in the row “Yes”, this makes the proportion of “Ba=10+” 
under condition “FM=Yes” equal to  P(Ba=10+ /FM=Yes) = P(Ba=10+ & FM 
=Yes) /P(FM=Yes) =0.0444/0.20= 0.222 =22.2%. Such a ratio expresses the con-
ditional probability/rate.  

 
Is this high or low? Hard to tell without comparing this with the unconditional 

rate, that is, with the frequency of category “Ba=10+” in the whole dataset, which 
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is P(Ba=10+)=13.33%. Let us compute the (relative) difference between the two, 
which is referred to as Quetelet index q: 

 
q(Ba=10+/FM=Yes)= [P(Ba=10+/FM=Yes)−P(Ba=10+)]/P(Ba=10+) = [0.2222 

– 0.1333]  / 0.1333 = 0.6667  = 66.7%. 
 
That means that condition “FM=Yes” raises the frequency of the Bank category 
by 66.7%. This logic concurs with our everyday intuition. Consider, for example, 
the risk of getting a serious illness, say tuberculosis, which may be, say, about 
0.1%, one in a thousand, in a given region. Take a condition such as “Bad hous-
ing” and count the rate of tuberculosis under this condition, amounting to, say 
0.5% - which is very small by itself, yet a five-fold increase over the average tu-
berculosis rate. This is exactly what Quetelet index measures: q(l/k)=(0.5-
0.1)/0.1=400% to show that the change of the average rate is 4 times. 

 
Worked example 2.11. Quetelet index in a contingency table 
 
Let us apply the general Quetelet index formula (2.16) to entries in Table 2.14. This 

leads to Quetelet index values presented in Table 2.18. By highlighting positive values in 
the table, we obtain the same pattern as on the “purified” data as in Case-study 2.3, but this  

 
Table 2.18. BA/FM Cross classification Quetelet coefficients, % (positive entries high-
lighted) 

 
 

 

FMarket 10+ 4+ 2+ 1- 
Yes -64.29 -61.54    66.67      108.33 
No -16.67 -27.08 16.07 15.38 

time in a somewhat more realistic manner, keeping the sample intact. Specifically, one can 
see that “Yes” FM category provides for a strong increase in the probabilities, whereas 
“No” category leads to much weaker changes. 

 
Q.2.16. Compute Quetelet coefficients for Table 2.16. A.  See Table 2.19 in which 
positive entries are highlighted in bold. 

 
Table 2.19. Quetelet indices for the Protocol/Attack contingency Table 2.16, per 
cent 

 
Category Apache Saint Surf Norm 

   56.25    56.25 Tcp -100.00 -16.29 
Udp -100.00 -100.00 -100.00   78.57 
Icmp -100.00 -100.00   900.00 -100.00 

 
Case-study 2.4. Has there been a bias in S’nS’ policy? 



 117 

 
Take on the case of Stop-and-Search policy in England and Wales 2005 represented ac-

cording to race  (B - black, A - asian and W - white), by numbers in Table 1.4 in section 1.3 
– these are overwhelmingly in category W. The criticism of this policy came out of com-
parison of this distribution with the distribution of the entire  

 
Table 2.20. Distribution of Stop-and-Search policy cross-classified with race. 
 

 S’n’S Not S’n’S Total S’n’S-to-
Total  

Black 131723   1377493   1509216 0.0873 
Asian   70252   2948179   3018431 0.0233 
White 676178 46838091 47514269 0.0142 
Total 878153 51163763 52041916 0.0169 

  
population. Such a distribution, according to the latest pre-2005 census 2001, can be easily 
found on web. By subtracting from that the numbers of Stop-and-Search occurrences, under 
the assumption that nobody has been subjected to this more than once, Table 2.20 has been 
drawn. Its last column gives the numbers that were used for the claim of a racial bias: in-
deed category B members have been subjects of the policy six times more frequently than 
category W members. A similar picture emerges when Quetelet coefficients are used (see 
Table 2.21). Category B is subject to Stop-and-Search policy 400% more frequently than 
on average, whereas category W is 15% less.  

 
Table 2.21. Relative Quetelet coefficients for cross-classification in Table 2.20, per cent 

 
 S’n’S Not S’n’S 
Black 417.2    -7.2 
Asian   37.9    -0.6 
White -15.7      0.3 

  
Yet some would consider drawing a table like Table 2.20, and of course the derived Table 
2.21, as something nonsensical, because it is based on an implicit assumption that the Stop-
and-Search policy applies to the population randomly. They would argue that police apply 
the policy only when they deem it necessary, so that the comparison should involve not all 
of the total population but only those criminal.  Indeed, the distribution of subjects to Stop-
and-Search policy by race has been almost identical to that of the imprisoned population of 
the same year. Therefore, the claim of a racial bias should be declared incorrect. 
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P2.3.3 Chi-square contingency coefficient as a summary 
correlation index 

A somewhat more refined visualization of the contingency table comes from 
the Quetelet indexes weighted by the probabilities of corresponding entries, as ex-
plained in section F2.3. These sum up to a most popular concept in the analysis of 
contingency tables, the celebrated chi-square contingency coefficient. This coeffi-
cient was introduced by K. Pearson (1901) to express the deviation of the ob-
served bivariate distribution, represented by the relative frequencies in a contin-
gency table, from the situation of statistical independence between the features. 

 
Worked example 2.12. Visualization of contingency table using weighted 
Quetelet coefficients  

 
Let us multiply Quetelet coefficients in Table 2.18 by the frequencies of the correspond-

ing entries in Table 2.14.  Quetelet coefficients in Table 2.18 are taken relative to unity, not 
per cent. This leads us to Table 2.22 whose entries sum up to the value of Pearson’s chi-
square coefficient for Table 2.14, 6.86. Note that entries in Table 2.20 can be both positive 
and negative; those with absolute value greater than 6.86/4=1.72 are highlighted in bold – 
they show the entries of an extraordinary deviation from the average. Of them, column 4+ 
supplies the highest positive impact and the highest negative impact. 

 
Table 2.22. BA/FM chi-squared (NQ = 6.86) and its decomposition according to (2.19) 

 
FMarket 10+ 4+ 2+ 1- Total 
       Yes    1.33      5.41  -.64 -.62 5.48 
         No    -.67 -1.90  2.09 1.85 1.37 
        Total    0.67  3.51 1.45 1.23 6.86 

 
A pair of categories, one from one nominal feature and the other from another 

nominal feature, are said to be statistically independent if the probability of their 
co-occurrence is equal to the product of probabilities of these categories. Take, for 
example, category “Yes” of FM and “4+” of Banks in Table 2.15: the probability 
of their co-occurrence is 0.111. On the other hand, the probability of FM=”Yes” is 
0.2 and that of Banks=4+ is 0.267, according to the table. If these two categories 
were independent they would have co-occurred at the level of 0.2×0.267=0.053, 
about twice as less than in reality, which means that the pair highly deviates from 
the statistical independence. Two features are said to be statistically independent if 
all pairs of their mutual categories are statistically independent. K. Pearson was 
concerned with the situation at which two features are independent in the popula-
tion at large but this may not necessarily be reflected in the sample under consid-
eration because of the randomness of sampling. Thus he proposed to take the 
squared differences between observed frequencies and those that would occur un-



 119 

der the independence assumption and relate them to the “theoretical” probabilities 
that should be true in the population. The summary index is referred to as the 
Pearson chi-square coefficient, see (2.18) later. The distribution of the summary 
chi-square index, under conventional assumptions of independence in sampling, 
converges to the so-called chi-square distribution, which allows for statistical test-
ing of the hypothesis of independence between the features. This suggests that the 
coefficient should be used only for testing the hypothesis, but not as a measure of 
correlation. The claim would be – and often has been – that the index can only dis-
tinguish between two cases, statistical independence or not, and thus cannot be 
used for comparison of the extent of the dependence. Yet practitioners are always 
tempted to ignore this commandment and do compare the extent of dependence at 
different pairs of categorical features. Indeed, as formula (2.19) shows there is 
nothing wrong in using chi-square contingency coefficient as an index of correla-
tion – it is indeed the summary Quetelet index, thus showing the average degree of 
relationship between two features. 

 
Worked example 2.13. A conventional decomposition of chi-square coeffi-

cient 
 
Table 2.23. Square roots of the items in Pearson chi-squared (X2 = 6.86); the items 

themselves are in parentheses.  
 

FMarket 10+ 4+ 2+ 1- Total 
Yes  0.73(0.53)    1.68(2.82) -1.08 (1.16) -0.99 (0.98) (5.49) 
No  -0.36 (0.13) -0.84 (.70) 0.54 (0.29) 0.50 (0.25) (1.37) 
Total  (0.67)   (3.52) (1.45) (1.23)  (6.86) 

 
Let us consider a conventional way of visualization of contingency tables, by putting 

Pearson indexes, the square roots x(k,l) of the chi-square coefficient items in (2.21) as the 
table’s elements. These are in Table 2.23. The table does show a similar pattern of positive 
and negative associations. However, it is not the entries of the table that sum up to the chi-
square coefficient but rather the squares of the entries. The fact that the summary values on 
the margins in Tables 2.22 and 2.23 are the same is not by chance: it exemplifies a mathe-
matical property (see equation (2.19)). 

 
Q. 2.17. In Table 2.22, all marginal values, the sums of rows and columns, are 
positive, in spite of the fact that many within-table entries are negative. Is this just 
due to specifics of the distribution in Table 2.14 or a general property? A: A gen-
eral property: the within-row or within-column sums of the elements, Nlk q(l/k), 
must be positive, see (2.19).  

 
Q. 2.18. Find a similar decomposition of chi-squared for OOPmarks/Occupation 
in Student data. Hint: First, categorize quantitative feature OOPmarks somehow: 
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you may use equal bins, or conventional boundary age points such as 35, 65 and 
75, or any other considerations. 

 
Q. 2.19.  Can any logical production rules come from the columns of Table 2.16? 
A. Yes, both Apache and Saint attacks may occur at the tcp protocol only. 

 
Q.2.20. Among the shoppers in Q.1.21, those who spent £60 each are males only 
and those who spent £100 each are females only, whereas among the rest 30 indi-
viduals half are men and half are women. Build a contingency table for the two 
features, gender and spending. Find and interpret the value of Quetelet coefficient 
for females who spent £100 each.  A. The contingency table (of co-occurrence 
counts): 

   Spending, £ 
 Gender   60 100 150 Total 
    
 Female  0 20   15 35 
 Male   50  0  15 65 
 Total   50 20  30 100 

 
This table of absolute co-occurrence counts coincides with that of proportions ex-
pressed per cent because the number of shoppers is just 100.  

 
Quetelet coefficient for (Female/£100) entry is 

                  Q=100*20/(20*35) – 1=2.86 –1= 1.86 
This means that being female in this category of spending is more likely than the 
average, by 186%. 

 
Q.2.21. Consider a data table for 8 students and 2 features, as follows: 

 
        Student    Mark Occupation            
  1     50 IT  
  2    80 IT 
  3    80 IT 
  4   60 AN 
  5   60 AN 
  6   40 AN 
  7   40 AN 
  8   50 AN 
    (i)         Build a regression table for prediction Mark by Occupation.  
   (ii)         Predict the mark for a new student whose occupation is IT.  

(iii) Find the correlation ratio for the table.  
A. (i) Regression table of Mark over Occupation contains Occupation category 

frequencies as well as Mark within-category averages and variances is this: 
                                                                       Mark 
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                                          Frequency   Average          Variance 
  IT  3 70  14.1 
  AN  5 50  8.9 
     (ii) For an IT student the likely mark will be 70±14.1. 
    (iii) The correlation ratio is determined by the weighted within-category 

variance, which is (3*14.1+5*8.9)/8 = (42.3+44.5)/8 = 10.85, and the total vari-
ance, which is calculated on all the data set with the mean=57.5, and equal to 
14.79. Then correlation ratio is η2=1-10.85/14.79=0.266. This means that the table 
regression explains only 26.6% of the variance of Mark.  

F2.3 Analysis of contingency tables: Formulation 

Consider two sets of disjoint categories on an entity set I: l=1,…, L (for exam-
ple, occupation of individuals constituting I) and k=1,…,K  (say, family or hous-
ing type). Each makes a partition of the entity set I; they are crossed to see if there 
is any correlation between them. Combine a pair of categories (k,l)∈K×L and 
count the number of entities that fall in both. The  (k,l) co-occurrence count is de-
noted by Nkl. Obviously, these counts sum up to N because the categories are not 
overlapping and cover the entire dataset. A table housing these counts, Nkl , or 
their relative values, frequencies pkl =Nkl /N, is referred to as a contingency table or 
just cross-classification. The totals, that is, within-row sums N  =Σk+ l Nkl and 
within-column sums N+l =Σ  Nk kl (as well as their relative frequency counterparts) 
are referred to as marginals (because they are located on margins of the contin-
gency table). 

 
The (empirical) probability that category l occurs under condition of k can be 

expressed as P(l/k)= pkl/p  = Nk+ kl /Nk+. The probability P(l) of the category l with 
no condition is just p+l = N+l/N. Similar notation is used when l and k are 
swapped. The relative difference between the two probabilities is referred to as 
(relative) Quetelet index (Mirkin 2001): 

 
( / ) ( )( / )

( )
P l k P lq l k

P l
−

=      (2.16) 

   
where P(l)= N+l/N, P(k)= Nk+/N, P(l/k)=N  /Nkl k+. That is, Quetelet index expresses 
correlation between categories k and l as the relative change in the probability of l 
when k is taken into account. 

 
With little algebra, one can derive a simpler expression 
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1kl

k l

p
p p+ +

−q(l/k) = [Nkl /Nk+ - N+l/N]/(N+l/ N) = Nkl N/(N  Nk+ +l )–1 = (2.16′) 

 
Highlighting high positive and negative values in a Quetelet index table, such 

as Table 2.18 and Table 2.21, visualizes the pattern of correlation between the two 
sets of categories. 

 
This visualization can be extended to a more theoretically sound presentation. 

Let us define the summary Quetelet correlation index Q as the sum of pair-wise 
Quetelet indexes weighted by their frequencies/probabilities: 

 
2

1 1 1 1 1 1
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kl kl
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pQ p q l k p
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−    (2.17)  

 
The right-hand expression for Q in (2.17) is very popular in statistical analysis of 
contingency data. In fact, this is equal to chi-squared correlation coefficient pro-
posed by K. Pearson (1901) in a very different context – as a measure of deviation 
of the contingency table entries from the statistical independence. 

 
To explain this in more detail, let us first introduce the concept of statistical in-

dependence. The sets of k and l categories are said to be statistically independent 
if pkl = p  pk+ +l  for all k and l. Obviously, such a condition is hard to fulfill in real-
ity. K. Pearson suggested using relative squared errors to measure the deviations 
of observed frequencies from the statistical independence. Specifically, he intro-
duced the following coefficient usually referred to as Pearson’s chi-squared asso-
ciation coefficient: 

2 2
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The equation on the right can be proven with little algebra. Consider, for example, 
this part of the expression on the left in (2.18): 
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pThe expression on the right is derived by using equations Σl kl = p p and Σk+ l +l =1. 
Summing up these equations over k will produce (2.18). On the other hand, the 
expression on the right is obviously equal to Σl pklq(l/k) so that 
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By comparing the right-hand parts of (2.17) and (2.18), it is easy to see that 

X2=NQ. The same follows from summing up equations (2.19) over k.  
 
The popularity of X2 index in statistics and related fields rests on the theorem 

proven by K. Pearson: if the contingency table is based on a sample of entities in-
dependently drawn from a population in which the statistical independence holds 
(so that all deviations are due to just randomness in the sampling), then the prob-
abilistic distribution of X2 converges to the chi-squared distribution (when N tends 
to infinity) introduced by Pearson earlier for similar analyses. The probabilistic 
chi-squared distribution is defined as the distribution of the sum of several stan-
dard Gaussian distributions squared.  

 
This theorem is not always of interest to a computational data analyst, because 

they draw on data that are not necessarily random or not necessarily independently 
sampled. However, Pearson’s chi-squared coefficient is frequently used just for 
scoring correlation in contingency tables, and the equation X2=NQ gives a credible 
support to it. According to this equation, X2 also is not necessarily a measure of 
deviation from the statistical independence. It also has a different meaning of a 
measure of interrelation between categories: that of the averaged Quetelet coeffi-
cient.  

 
To make the underlying correlation concept more clear, let us take a look at the 

extreme values that X2 can take and situations at which the extreme values are 
reached (Mirkin 2001). It appears that at K ≤ L, that is, the number of columns is 
not greater than that of rows, X2 ranges between 0 and K –1. It reaches 0 if there is 
a statistical independence at all (k,l) entries so that all qkl=0, and it reaches K  – 1 
if each column l contains only one non-zero entry pk(l)l, which is thus equal to p+l. 
The latter can be interpreted as the logical implication k → l(k). 

 
Representation of chi-squared through Quetelet coefficients, 
 

2

1 1
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= =
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amounts to decomposition of X2 into the sum of Nkl q(l/k) items and allows for 
visualization of the items within the contingency table format, such as that pre-
sented in Table 2.22.  
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In fact not only the total sum of these items coincide with that of the original 
chi-squared items N(pkl  - pk+p+l )2/ p pk+ +l, but also the within-column and within-
row sums coincide too, as (2.19) clearly demonstrates for the latter case .  

 
However all the original chi-squared items in (2.18) are positive and cannot 

show whether the contribution of an individual entry is positive or negative. To 
overcome this shortcoming, another visualization of  X2 is in use. That visualiza-
tion involves the square roots of the chi-squared items 
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−
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that are convenient to refer to as Pearson indexes. Obviously, X2= NΣk,l r(k,l)2. 
Pearson indexes indeed have the same signs as q(l/k), and in fact are closely re-
lated: q(l/k)=r(k,l)√(p  pk+ +l). It is less clear what interpretation of its own r(k,l) 
may have, although they are useful in Correspondence analysis of contingency ta-
bles (section 4.4, see also normalized Laplacian in section 7.2). 

 
Q.2.22.  Take two binary features presented as 1/0 variables and build their con-
tingency table, sometimes referred to as a four-fold table (Table 2.24) when sym-
bols a, b, c, d are used to denote the co-occurrence numbers. 

 
Table 2.24 Four-fold contingency table between binary features. 
           

  Feature Y   Total 
Yes            No 
  a                b a+b Feature 

X 
Yes 
Not   c               d c+d 

a+c          b+d        N=a+b+c+d Total 
 

Prove that Quetelet coefficient q(Yes/Yes) expressing the relative difference be-
tween a/(a+c) and (a+b)/N is equal to 

( / )
( )(

ad bcq Yes Yes
a c a b)

−
=

+ +
                                            , 

 
and the summary Quetelet coefficient Q, or Pearson’s X2/N, is equal to 

 
2( )

( )( )( )(
ad bcQ

a c b d a b c d
−

=                                                     
)+ + + +

. 

 
Q.2.23. Prove that the correlation coefficient between two 1/0 binary features can 
be expressed in terms of the four-fold table as ρ=√Q, that is, 
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Q.2.24. Given a K×L contingency table P and a pair of categories, k∈K and l∈L, 
consider an absolute Quetelet index a(l/k)=P(l/k)-P(l) – the change from the fre-
quency of l∈L on the whole entity set I to the frequency of l on entities falling in 
category k∈K. In terms of P, P(l)=p+l and P(l/k)=pkl/p+l. Prove that the summary 
Quetelet index A= Σk,l pkla(l/k)= Σk,lpkl

2/pk+  - Σl p+l
2 is equal to the following ex-

pression, an asymmetric analogue to Pearson chi-squared:  
2

1 1

( )K L
kl k l

k l k

p p pA
p

+ +

= = +

−
= ∑∑                  (2.22)  

which also is the numerator of the so called Goodman-Kruskal “tau-b” index 
(Kendall and Stewart, 1973). A. Indeed, by taking the square of the denominator, 
expression in (2.22) becomes equal to Σk,l (pkl

2 2-2pklpk+p+l +pk+ p+l
 2)/pk+, which is 

Σk,lpkl
2/pk+  - 2Σk,lpklp+l +Σk,l pk+p+l

2= Σk,lpkl
2/pk+  - 2Σk,l p+l

2 +Σl p+l
2 because 

Σkpkl=p+l and  Σkpk+=1 .This is obviolsly Σk,lpkl
2/pk+  - Σl p+l

2= Σk,l pkla(l/k)=A  
which proves the statement. 

2.4 Summary 

The Chapter outlines several important characteristics of summarization and 
correlation between two features, and displays some of the properties of those. 
They are: 

- linear regression and correlation coefficient for two quantitative vari-
ables;  

- tabular regression, correlation ratio, decomposition of the quantitative 
feature scatter, and nearest neighbor classifier for the mixed scale case; 
and  

- contingency table, Quetelet index, statistical independence, and Pearson’s 
chi-squared for two nominal variables. 

 
They all are applicable in the case of multidimensional data as well. 

 
Some of the characteristics are rather unconventional. For example, the concepts 
of tabular regression and correlation ratio are not terribly popular in data mining. 
The Quetelet indexes are recognized by neither community, the more so the idea 
that Pearson chi-squared is a summary correlation measure, not necessarily a crite-
rion of statistical independence. 
 
Some examples of non-linear regression and nature-inspired approaches for fitting 
that are outlined. Computational bootstrap based validation is considered. 



 126 

References 

M. Berthold, D. Hand (1999), Intelligent Data Analysis, Springer-Verlag, ISBN 
3540658084. 

 
A.C. Davison, D.V. Hinkley (2005) Bootstrap Methods and Their Application, 
Cambridge University Press (7th printing).  

 
R.O. Duda, P.E. Hart, D.G. Stork (2001) Pattern Classification, Wiley-
Interscience, ISBN 0-471-05669-3 

 
M.G. Kendall, A. Stewart (1973) Advanced Statistics: Inference and Relation-
ship (3d edition), Griffin: London, ISBN: 0852642156.

 
H.Lohninger (1999) Teach Me Data Analysis, Springer-Verlag, Berlin-New 
York-Tokyo, 1999. ISBN 3-540-14743-8. 

 
B. Mirkin (2005) Clustering for Data Mining: A Data Recovery Approach, 
Chapman & Hall/CRC, ISBN 1-58488-534-3. 

 
T. Soukup, I. Davidson (2002) Visual Data Mining, Wiley and Son, ISBN 0-471-
14999-3 

 
Articles 

 
J. Carpenter, J. Bithell (2000) Bootstrap confidence intervals: when, which, what? 
A practical guide for medical statisticians, Statistics in Medicine, 19, 1141-1164.   

 
B. Mirkin (2001) Eleven ways to look at the chi-squared coefficient for contin-
gency tables, The American Statistician, 55, no. 2, 111-120. 

 
K. Pearson (1900) On a criterion that a given systrm of deviations from the prob-
able in the case of a correlated system of variables is such that it can be reasonably 
supposed to have arisen in random sampling, Philosophivcal Magazine, 50, 157-
175.. 
     

 
 
 
 
 
 
 



 127 

3 Learning multivariate correlations in data  

Boris Mirkin 

Department of Computer Science and Information Systems, Birkbeck, University of London, 
Malet Street, London WC1E 7HX UK 

Department of Data Analysis and Machine Intelligence, Higher School of Economics, 11 
Pokrovski Boulevard, Moscow RF  

Abstract    

After a short introduction of the general concept of decision rule to relate input 
and target features, this chapter describes most popular method for decision rule 
building. Two of them pertain to quantitative targets (linear regression, neural 
networks), and four to categorical ones (linear discrimination, support vector ma-
chine, naïve Bayes classifiers and classification trees).   

Of these, classification trees are treated in a most detailed way including a 
number of important theoretical results that are not well known. These establish 
firm relations between popular scoring functions and, first,  bivariate measures de-
scribed in Chapter 2, Quetelet indexes in contingency tables, first of all, and, sec-
ond, normalization options for dummy variables representing target categories. 

Some related concepts such as Bayes decision rule, bag-of-word model in text 
analysis, VC-complexity and kernel in non-linear classification are introduced too. 
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3.1 General: Decision rules, fitting criteria, and learning 
protocols 

To specify a problem of learning correlation in a data table, one has to distin-
guish between two parts in the feature set: predictor, or input, features and target, 
or output, features. Typically, the number of target features is small, and in ge-
neric tasks, there is just one target feature. Target features are usually difficult to 
measure or impossible to know beforehand. This is why one would want to derive 
a decision rule relating predictors and targets so that prediction of targets can be 
made after measuring predictors only. Examples of learning problems include: 

(a) chemical compounds: input features are of the molecular structure, whereas 
target features are activities such as toxicity or healing effects;  

(b) types of grain in agriculture: input features are those of the seeds, ground 
and weather, and target features are of productivity and protein contents,  

(c) industrial enterprises: input features refer to technology, investment and la-
bor policies, whereas target features are of sales and profits;  

(d) postcode districts in marketing research: input features refer to demo-
graphic, social and economic characteristics of the district residents, target fea-
tures – to their purchasing behavior;  

(e) bank loan customers: input features characterize demographic and income, 
whereas output features are of (potentially) bad debt;  

(f) gene expression data: input features relate to levels of expression of DNA 
materials in the earlier stages of an illness, and output features to those at later 
stages. 

 
A decision rule predicts values of target features from values of input features.  

A rule is referred to as a classifier if the target is categorical and as a regression if 
the target is quantitative. A generic categorical target problem is defined by speci-
fying just a subset of entities labeled as belonging to the class of interest –  the 
correlation problem in this case would be of building such a decision rule that 
would recognize, for each of the entities, whether it belongs to the labeled class or 
not. A generic regression problem – the bivariate linear regression – has been con-
sidered in section 2.1; its extension to the multivariate case will be described later 
in section 3.3. 

A decision rule is learnt over a dataset in which values of the targets are avail-
able. These data are frequently referred to as the training data. The idea underlying 
the process of learning is to look at the difference between predicted and observed 
target feature values on the training data set and to minimize them over a class of 
admissible rules. The structure of such a process is presented on the upper part of 
Figure 3.1.   

 
The notion that it ought to be a class of admissible rules pre-specified emerges 

because the training data is finite and, therefore, can be fit exactly by using a suf- 



 129 

                              

 

 Input data                   Rule               Predicted
                                                                

data

Target data 
                         Difference

Input data                 Rule                  Predicted
                                                           data                          

Target data 
                               Difference 

        
Figure 3.1. Structure of a training/testing problem: In training, on the top, the 

decision rule is fitted to minimize the difference between the predicted and ob-
served target data. In testing, the bottom part, the rule is used to calculate the dif-
ference so that no feedback to the rule is utilized.  
 
ficient number of parameters. However, this would be valid on the training set 
only, because the fit would capture all the errors and noise inevitable in data col-
lecting processes. Take a look, for example, at the 2D regression problem on Fig-
ure 3.2 depicting seven points on (x,u)-plane corresponding to observed combina-
tions of input feature x and target feature u. 

 
 
 
 
                                      u 
 
 
                                                                               
                                                                                                                         x 
 
 
 
Figure 3.2. Possible graphs of interrelation between x and u according to ob-

served data points (black circles). 
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The seven points on Figure 3.2 can be exactly fitted by a polynomial of 6th or-
der u = p(x) = a0+a1x+a2x2+ a3x3 +a4x4+a5x5+a6x6. Indeed, they would lead to 7 
equations ui=p(xi) (i=1,…,7),  so that, in a typical case, the 7 coefficients ak of the 
polynomial can be exactly determined. Having N points observed would require 
an N-th degree polynomial to exactly fit them. 

 
However, the polynomial, on which graph all observations lie, has no predic-

tive power both within and beyond the range.  The curve may go either course 
(like those shown) depending on small changes in the data. The power of a theory 
– and a regression line is a theory in this case – rests on its generalization power, 
which, in this case, can be cast down as the relation between the number of obser-
vations and the number of parameters: the greater the better. When this ratio is 
relatively small, statisticians would refer to this as an over-fitted rule. The overfit-
ting normally produce very poor predictions on newly added observations. The 
blue straight line fits none of the points, but it expresses a simple and very robust 
tendency and should be preferred because it summarizes the data much deeper: the 
seven observations are summarized here in just two parameters, slope and inter-
cept, whereas the polynomial line provides no summary: it involves as many pa-
rameters as the data entities. This is why, in learning decision rules problems, a 
class of admissible rules should be selected first. Unfortunately, as of this mo-
ment, there is no model based advice, within the data analysis discipline, on how 
this can be done, except very general ones like “look at the shapes of scatter 
plots”. If there is no domain knowledge to choose a class of decision rules to fit, it 
is hard to tell what class of decision rules to use. 

 
A most popular advice relates to the so-called Occam’s razor, which means 

that the complexity of the data should be balanced by the complexity of the deci-
sion rule. A British monk philosopher William Ockham (c. 1285–1349) said: “En-
tities should not be multiplied unnecessarily.” This is usually interpreted as saying 
that all other things being equal, the simplest explanation tends to be the best one. 
Operationally, this is further translated as the Principle of Maximum Parsimony, 
which is referred to when there is nothing better available. In the format of the so-
called “Minimum description length” principle, this approach can be meaningfully 
applied to problems of estimation of parameters of statistic distributions (see P.D. 
Grünwald  2007). Somewhat wider, and perhaps more appropriate, explication of 
the Occam’s razor is proposed by Vapnik (2006). In a slightly modified form, to 
avoid mixing different terminologies, it can be put as follows: “Find an admissible 
decision rule with the smallest number of free parameters such that explains the 
observed facts” (Vapnik 2006, p. 448). However, even in this format, the principle 
gives no guidance about how to choose an adequate functional form. For example, 
which of two functions, the power function f(x)=axb or logarithmic one, 
g(x)=blog(x)+a, both having just two parameters a and b, should be preferred as a 
summarization tool for graphs on Figure 3.3? 
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Figure 3.3. Graph of one two functions, f(x)=65x0.3 and g(x)=50log(x)+30, 

both with an added normal noise N(0,15), is presented on each plot. Can the reader 
give an educated guess of which is which? (Answer: f(x) is on the right and g(x) 
on the left.)  

 
Another set of advices, not incompatible with those above, relates to the so-

called falsifability principle by K. Popper (1902-1994), which can be expressed as 
follows: “Explain the facts by using such an admissible decision rule which is 
easiest to falsify” (Vapnik 2006, p. 451). In principle, to falsify a theory one needs 
to give an example contradicting to it. Falsifability of a decision rule can be for-
mulated in terms of the so-called VC-complexity, a measure of complexity of 
classes of decision rules: the smaller VC-complexity the greater the falsifability.  

 
 
Figure 3.4. Any two-part split of three points (not on one line) can be made by a 
linear function, but the presented case on four points cannot be solved by a line. 

 
Let us explain the concept of VC-complexity for the case of a categorical tar-

get, so that a decision rule to be would be a classifier. However many categorical 
target features are specified, different combinations of target categories can be as-
signed different labels, so that a classifier is bound to predict a label. A set of clas-
sifiers Φ is said to shatter the training sample if for any possible assignment of the 
labels, a classifier exactly reproducing the labels can be found in Φ. Given a set of 
admissible classifiers Φ, the VC-complexity of a classifying problem is the maxi-
mum number of entities that can be shattered by classifiers from Φ. For example, 
2D points have VC complexity 3 in the class of linear decision rules. Indeed, any 
three points, not lying on a line, can be shattered by a line; yet not all four-point 
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sets can be shattered by lines, as shown on Figure 3.4, the left and right parts, re-
spectively.  
 
The VC complexity is an important characteristic of a correlation problem espe-
cially within the probabilistic machine learning paradigm. Under conventional 
conditions of the independent random sampling of the data, an reliable classifier 
“with probability a% will be b% accurate, where b depends not only on a, but also 
on the sample size and VC-complexity” (Vapnik 2006). 
 

The problem of learning correlation in a data table can be stated, in general 
terms, as follows. Given N pairs (xi, ui),i =1, …, N, in which xi are predictor/input 
p-dimensional vectors xi=(xi1,…,xip) and ui = (ui1,…,uiq) are target/output q-
dimensional vectors (usually q=1),  build a decision rule  

û = F(x)      (3.1) 
such that the difference between computed û and observed u is minimal over a 
pre-specified class Φ of admissible rules F.   

 
To specify a correlation learning problem one should specify assumptions regard-
ing a number of constituents including: 

  
(i)        Type of target 

Two types of target features are considered usually: quantitative and 
categorical. In the former case, equation (3.1) is usually referred to 
as regression; in the latter case, decision rule, and the learning prob-
lem is referred to as that of “classification” or “pattern recognition”. 

(ii)       Type of rule 
A rule involves a postulated mathematical structure whose pa-

rameters are to be learnt from the data.  The mathematical structures 
considered further on are: 

  - linear combination of features 
- neuron network mapping a set of input features into a set of 
target features 

  - decision tree built over a set of features 
  - partition of the entity set into a number of non-overlapping  
  clusters 
       (iii)     Criterion  

Criterion of the quality of fitting depends on the framework in which 
the learning task is formulated. Most popular criteria are: maximum 
likelihood (in a probabilistic model of data generation), least-squares 
(data recovery approach) and relative errors. According to the least-
squares criterion, the difference between u and  û is measured with 
the average squared error, 

 
E=<u- û, u- û>/N=<u-F(x),u-F(x)>/N  (3.2) 
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              which is to be minimized over all admissible F.  
         

  (iv)    Training protocol 
The rule F is learnt from a training dataset. The way the data be-
comes available can be referred to as the learning protocol. Three 
popular training protocols are: batch, random and on-line. The batch 
mode is the case when all training set is available and used at once, 
the other two refer to cases when data entities come one by one so 
that the learning goes incrementally. In the random protocol, the data 
are available at once, yet the learning process is organized incremen-
tally by picking up entities randomly one-by-one, possibly many 
times each. In contrast, in an on-line protocol each entity comes from 
an external source and can be seen only once.  

3.2 Naïve Bayes Approach 

3.2.1  Bayes decision rule 

Consider a situation in which there is only one target, a binary feature labeling 
two states of the world corresponding to “positive” and “negative” classes of enti-
ties. According to Bayes (1702-1761), all relevant knowledge of the world should 
be shaped by the decision maker in the form of probability distributions. Then, 
whatever new data may be observed, they may lead to changing the probabilities – 
hence the difference between prior probabilities and posterior, data-updated, prob-
abilities. Specifically, assume that, P(1)= p1 and P(2)=p2 are prior probabilities of 
the two states so that p1 and p2 are positive and sum up to unity. Assume further-
more that there are two probability density functions, f1(x1,  x2, …, xp) and f2(x1,  
x2, …, xp), defining the generation of observed entity points x=(x1,  x2, …, xp) for 
each of the classes. That gives us, for any point  x=(x1,  x2, …, xp) to occur, two 
probabilities, P(x/1)= p1f1(x) and P(x/2)= p2f2(x), of x being generated from either 
class. If an x=(x1,  x2, …, xp)  is actually observed, it leads to a change in probabili-
ties of the classes, from the prior probabilities P(1)=p1 and P(2)=p2 to posterior 
probabilities P(1/x) and P(2/x), respectively. These can be computed according to 
the well-known Bayes theorem from the elementary probability theory, so that the 
posterior probabilities of the classes are 

 
P(1| x)=p1f1(x)/f(x) and P(2|x)=p2f2(x)/f(x)  (3.3) 

 
where  f(x)=p1f1(x)+ p2f2(x). 
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The decision of which class the entity x belongs to depends on what value, 

P(1/x) or P(2/x) is greater. The class is assumed to be positive if P(1/x) > P(2/x)  
or, equivalently,     

 
f1(x)/f2(x) >p2/p1   (3.4) 

 
or, negative, if the reverse inequality holds. This rule is referred to as Bayes deci-
sion rule. Another expression of the Bayes rule can be drawn by using the differ-
ence B(x)=P(1/x)-P(2/x): x is taken to belong to the positive class if B(x)>0, and 
the negative class if B(x)<0. Equation B(x)=0 defines the so-called separating sur-
face between the two classes.  
 
The proportion of errors admitted by Bayes rule is 1-P(1/x) when 1 is predicted 
and 1-P(2/x) when 2 is predicted. These are the minimum error rates achievable 
when both within-class distributions f1(x) and f2(x) and priors p1 and p2 are 
known. 
 
Unfortunately, the distributions f1(x) and f2(x) are typically not known. Then 
some simplifying assumptions are to be made so that the distributions could be es-
timated from the observed data. Among most popular assumptions are: (i) Gaus-
sian probability and (ii) Local independence. Let us consider them in turn: 
 

(i) Gaussian probability 
 
The class probability distributions f1(x) and f2(x) are assumed to be Gaussian, 

so that each can be expressed as 
 

fk(x)=exp[-(x-μk)TΣ k
 -1(x-μk)/2]/[(2π)p|Σ k|]1/2   (3.5) 

 
where μk is the central point, Σ k the p×p covariance matrix and |Σ k| its determinant 
(k=1, 2).  

 
The Gaussian distribution is very popular. There are at least two reasons for 

that. First, it is treatable theoretically and, in fact, may lead to the least squares cri-
terion within the probabilistic approach. Second, some real-world stochastic proc-
esses, especially in physics, can be thought of as having the Gaussian distribution. 
Typical shapes of a 2D Gaussian density function are illustrated on Figure 3.5: 
that with zero correlation on the left and 0.8 correlation on the right. 
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Figure 3.5. Gaussian bivariate density functions over the origin as the expecta-

tion point – with zero correlation on the left and 0.8 correlation on the right. 
 
In the case at which the within-class covariance matrices are equal to each 

other, the Bayes decision function B(x) is linear so that the separating surface 
B(x)=0 is a hyperplane as explained later in section 3.4.  

 
(ii) Local independence (Naïve Bayes) 

 
The assumption of local independence states that all variables are independent 
within each class so that the within-cluster distribution is a product of one-
dimensional distributions: 
 
  fk(x1,  x2, …, xp)= f (x )fk1 1  k2(x )…f2  kp(x )                                    (3.5) p
 
This postulate much simplifies the matters because usually it is not difficult to 
produce rather reliable estimates of the one-dimensional density functions fkv(xv) 
from the training data. Especially simple such a task is when features x1,  x2, …, xp 
are binary themselves. In this case Bayes rule is referred to as naïve Bayes rule 
because in most cases the assumption of independence (3.5) is obviously wrong. 
Take, for example, the cases of text categorization or genomic analyses – constitu-
ents of a text or a protein serving as the features are necessarily interrelated ac-
cording to the syntactic and semantic structures, in the former, and biochemical 
reactions, in the latter. Yet the decision rules based on the wrong assumptions and 
distributions appear surprisingly good (see discussion in Manning et al. 2008).  
 
Combining the assumptions of local independence and Gaussian distributions in 
the case of binary variables, one can arrive at equations expressing the conditional 
probabilities through exponents of linear functions of the variables (as described 
in Mitchell 2010) so that: 
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Equations (3.6) express what is referred to as logistic regression. Logistic regres-
sion is a popular decision rule that can be applied to any data on its own right as a 
model for the conditional probability, and not necessarily derived from the restric-
tive independence and normality assumptions.  

3.2.2 Naïve Bayes classifier 

Consider a learning problem related to data in Table 3.1: there is a set of entities, 
which are newspaper articles, divided into a number of categories – there are three 
categories in Table 3.1 according to the three subjects: Feminism, Entertainment 
and Household. Each article is characterized by its set of keywords presented in 
the corresponding line. The entries are either 0 – no occurrence of the keyword, or 
1 – one occurrence, or 2 – two or more occurrences of the keyword. 
 
The problem is to form a rule according to which any article, including those out-
side of the collection in Table 3.1, can be assigned to one of these categories using 
its profile – the data on occurrences of the keywords in the corresponding line of 
Table 3.1. 

 
Table 3.1. An illustrative database of 12 newspaper articles along with 10 

keywords. The articles are labeled according to their main subjects –  F for femi-
nism, E for entertainment, and H for household.  

 
                  Keyword   Article  

drink equal   fuel     play   popular   price    relief   talent   tax    woman        
F1 1    2    0    1    2    0    0    0    0    2    
F2 0    0    0    1    0    1    0    2    0    2    
F3 0    2    0    0    0    0    0    1    0    2  
F4 2    1    0    0    0    2    0    2    0    1  
E1  2    0    1    2    2    0    0    1    0    0 
E2  0    1    0    3    2    1    2    0    0    0 
E3  1    0    2    0    1    1    0    3    1    1 
E4  0    1    0    1    1    0    1    1    0    0    

 H1 0    0    2    0    1    2    0    0    2    0 
 H2 1    0    2    2    0    2    2    0    0    0 
 H3 0    0    1    1    2    1    1    0    2    0 
 H4 

0    0    1    0    0    2    2    0    2    0 
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Consider the Naïve Bayes decision rule. It assigns each category k with its condi-
tional probability P(k/x) depending on the profile x of an article in question which 
is similar to equations in (3.3): 
                                                          ( / ) ( ) ( )k kP k x p f x f x=  
where ( ) ( )l l

l
f x p f= ∑ x .According to the Bayes rule, the category k, at which 

P(k/x) is maximum, is selected. Obviously, the denominator does not depend on k 
and can be removed: that category k is selected, at which  is maximum. ( )k kp f x

 
According to the Naïve Bayes approach, fk(x) is assumed to be the product of the 
probabilities of occurrences of the keywords in category k. How one can estimate 
such a probability? This is not that simple as it sounds. 
 
For example, what is the probability of term “drink” in H category? Probably, it 
can be taken as 1/4 – since the term is present in only one of four members of H. 
But what’s about term “play” in H – it occurs thrice but in two documents only; 
thus its probability cannot be taken ¾; yet 2/4 does not seem right either. A popu-
lar convention accepts the “bag-of-words” model for the categories. According to 
this model, all occurrences of all terms in a category are summed up, to produce 
31 for category H in Table 3.1. Then each term’s probability in category k would 
be its summary occurrence in k divided by the bag’s total. This would lead to a 
fairly small probability of the “drink” in H, just 1/31. This bias is not that impor-
tant, however, because what matters indeed in the Naïve Bayes rule is the feature 
relative contributions, not the absolute ones. And the relative contributions are all 
right with “drink”, “fuel” and “play” contributing 1/31, 6/31 and 3/31, respec-
tively, to H. Moreover, taking the total account of all keyword occurrences in a 
category serves well for balancing the differences between categories according to 
their sizes. 
 
Yet there is one more issue to take care of:  zero entries in the training data. Term 
“equal” does not appear at all in H leading thus to its zero probability in the cate-
gory. This means that any article with an occurrence of “equal” cannot be classed 
into H category, however heavy evidence from other keywords may be. One 
would make a point of course that term “equal” has not been observed in H just 
because the sample of four articles in Table 3.1 is too small, which is a strong ar-
gument indeed. To make up for these, another, a “uniform prior” assumption is 
widely accepted. According to this assumption each term is present once at any 
category before the count is started. For the case of Table 3.1, this adds 1 to each 
numerator and 10 to each denominator, which means that the probability of 
“drink”, “equal”, “fuel” and “play” in category H will be (1+1)/(31+10)=2/41, 
(0+1)/(31+10)=1/41, (6+1)/(31+10)=7/41 and (3+1)/(31+10)=4/41, respectively. 
 
To summarize, the “bag-of-words” model represents a category as a bag contain-
ing all occurrences of all keywords in the documents of the category plus one oc-
currence of each keyword, to be added to every count in the data table. 



 138 

 
Table 3.2. Prior probabilities for Naïve Bayes rule for the data in Table 3.1 ac-
cording to the bag-of-word conventions. There are three lines for each of the cate-
gories representing, from top to bottom, the term counts from Table 3.1, their 
probabilities multiplied by 1000 and rounded to an integer, and the natural loga-
rithms of the probabilities. 
 

Cate-
gory 

Prior probability Total Term counts  
Its logarithm count Term probabilities (in thousands) 

Logarithms of the probabilities 
F 1/3 27     3       5     0       2     2       3       0      5      0       7 

 108   162    27    81    81   108    27   162    27   216 
-1.099  4.6    5.1   3.3   4.4   4.4    4.7   3.3    5.1   3.3   5.4 

E 1/3 32    3      2      3      6       6      2       3         5     1     1 
  95     71    95   167   167    71    95    143    48    48 
-1.099 4.6   4.3    4.6    5.1    5.1   4.3   4.6    5.0    3.9    3.9 

H 1/3 31   1      0      6      3       3       7       5      0      6       0  
  49    24   171    98    98   195   146    24   171    24 
-1.099 3.9   3.2    5.1   4.6   4.6    5.3    5.0   3.2    5.1   3.2 

 
 
Table 3.2 contains the prior probabilities of categories, that are taken to be just 
proportions of categories in the collection, 4 of each in the collection of 12, as 
well as within-category probabilities of terms (the presence of binary features) 
computed as described above. Logarithms of these are given too.  
 
Table 3.3. Computation of category scores for entity E1 (first line) from Table 3.1 
according to the logarithms of within-class feature probabilities. There are two 
lines for each of the categories: that on top replicates the logarithms from Table 
3.2 and that on the bottom computes the inner product. 

Entity 
E1 

   2         0      1         2        2        0         0       1       0        0  

 
Now we can apply Naïve Bayes classifier to any entity presented in the format of 
Table 3.1 including those in Table 3.1 itself (the training set). Because the prob-
abilities in Table 3.2 are expressed in thousands, we may use sums of their loga-
rithms rather than the probability products; this seems an intuitively appealing op-
eration. Indeed, after such a transformation the score of a category is just the inner 
product of the row representing the tested entity and the feature scores correspond-
ing to the category. Table 3.3 presents the logarithm scores of article E1 for each 
of the categories. 

Category  Log(pk) Feature weights (probability logarithms) Score 
Inner product 

F -1.099  4.6     5.1    3.3    4.4     4.4      4.7      3.3    5.1     3.3    5.4  
2*4.6+0+ 1*3.3 +2*4.4+2*4.4 +0+ 0+     1*5.1   +0  +  0 34.2 

E -1.099  4.6     4.3    4.6    5.1     5.1      4.3      4.6     5.0     3.9    3.9  
2*4.6+0+ 1*4.6 +2*5.1+2*5.1 +0+ 0+     1*5.0   +0  +  0 38.0 

H -1.099  3.9     3.2    5.1    4.6     4.6      5.3      5.0     3.2     5.1    3.2  
2*3.9+0+ 1*5.1 +2*4.6+2*4.6 +0+ 0+     1*3.2    +0  +  0 33.3 
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Table 3.4. Naïve Bayes category scores for the items in Table 3.1.  
 
 Articles             Category scores 
       F                E             H 

F1    37.7006   35.0696   29.3069  
F2    28.9097   25.9362   21.5322  
F3    24.9197   20.1271   14.8723  
F4    38.2760   34.6072   30.0000  E1    34.2349   37.9964   33.3322  E2    37.2440   42.1315   40.2435 

 E3    43.1957   44.5672   40.8398 
 E4    21.1663   22.9203   19.4367 
 H1    25.8505   29.3940   34.5895 
 H2    34.9290   40.4527   42.7490 

H3    29.9582   35.3573   38.3227  
H4    24.7518   28.8344   34.8408  

 
 
It should be mentioned that the Naïve Bayes computations here, as applied to the 
text categorization problem, follow the so-called multinomial model in which only 
terms present in the entities are considered – as many times as they occur. Another 
popular model is the so-called Bernoulli model, in which terms are assumed to be 
generated independently as binomial variables. The Bernoulli model based com-
putations differ from these on two counts: first, the features are binary indeed so 
that only binary information, yes or no, of term occurrence is taken, and, second, 
for each term the event of its absence, along with its probability, is counted too 
(for more detail, see Manning et al. 2008, Mitchell 2010). 
 
Q.3.1. Apply Naïve Bayes classifier in Table 3.2 to article X =(2 2 0 0 0 0 2 2 0 0) 
which involves items “drink”, “equal”, “relief” and “talent” frequently. A. The 
category scores are: s(F/X)=35.2, s(E/X)=35.6, and S(H/X)=29.4 pointing to En-
tertainment or, somewhat less likely, Feminism.  
 
Q.3.2. Compute Naïve Bayes category scores for all entities in Table 3.1 and 
prove that the classifier correctly attributes them to their categories. A. See Table 
3.4. 
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3.2.3 Metrics of accuracy 

P3.2.3 Accuracy and related measures: Presentation 

  
Consider a generic problem of learning a binary target feature, so that all enti-

ties belong to either class 1 or class 2. A decision rule, applied to an entity, gener-
ates a “prediction” which of these two classes the entity belongs to.  The classifier 
may return some decisions correct and some erroneous. Let us pick one of the 
classes as that of our interest,  say 1, then there can be two types of errors: false 
positives (FP) – the classifier says that an entity belongs to class 1 while it does 
not, and false negatives (FN)– the classifier says that an entity does not belong to 
class 1 while it does.  

 
Let it be, for example, a lung screening device for testing against a lung cancer. 

Whilst established in a hospital cancer ward, on a selected sample of 200 patients 
sent by local surgeries for investigation,  it may produce results that are presented 
in Table 3.5. Its rows correspond to the diagnosis by the screening device and the 
columns to the results of further, more elaborate and definitive, tests. This is a 
cross-classification contingency table, and it is frequently referred to as a confu-
sion table. 

 
Table 3.5. Confusion table of patients’ lung screening test results. 
           

True lung cancer  
 Yes               No 

Total 

Yes  94                   7 Device’s  
diagnosis Not   1                  98 

101 
  99 

            Total 95               105      200 
 

There are 94 true positives TP and 98 true negatives TN in the table so that the to-
tal accuracy of the device can be rated as (94+98)/200=0.96=96%. Respectively, 
the numbers of false positives FP=7, and false negatives FN=1 sum up to 8 lead-
ing to 4% error rate. Yet there are significant differences between these two show-
ing that the device is in fact better than the totals show. Indeed, the 7 FP are not 
that important, because patients with the suspected cancer will be investigated fur-
ther in depth anyway so that their No-status will be restored, with the cost of fur-
ther testing. In contrast, 1 FN may go out of the medical system and get their can-
cer untreated with the potential loss of life because of the error. This is an example 
of different costs associated with FP and FN errors. The device made just one se-
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rious error: of 95 true cancer cases, one error. The TP rate, the proportion of cor-
rectly identified true cases, frequently referred to as recall or sensitivity, 
94/95=98.9%, is impressive indeed.  On the other hand, the precision, that is, the 
proportion of the 94 TP cases related to all cancer predicted cases, 101, is some-
what smaller, just 93% to reflect that FP rate is 7%. The difference between preci-
sion and sensitivity is somewhat averaged in the value of accuracy rate, 96% in 
this case, so that the accuracy rate works reasonably well here as a single charac-
teristic of the quality of the testing device. 

 
Yet in a situation in which there is a great disparity in the sizes of Yes and No 

classes, the accuracy rate fails to reflect the results properly. Consider, for exam-
ple, results of the same device at a random sample of 200 individuals who have 
not been sent for the screening by doctors but rather volunteered to be screened 
from public at large (Table 3.6). 

 
Table 3.6. Contingency table of volunteers’ lung screening test results. 
           

True lung cancer  
  Yes             No 

Total 

Yes     2                   2 Device’s  
diagnosis Not     1               195 

 4 
  196 

      Total    3               197       200 
 
The accuracy rate at Table 3.6 is even greater than at Table 3.5, 

(2+195)/200=98.5%. Yet both sensitivity, 2/3=66.7%, and precision, 2/4=50%, 
are quite mediocre. The high accuracy rate is caused by the very high specificity, 
the proportion of correctly identified No cases, 195/197=98.9%, and by the fact 
that there are very few Yes cases.  

 
As to a single measure adequately reflecting sensitivity and precision, the one 

most popular is their harmonic mean, the F-measure, which is equal to 
F=2/(1/(2/3)+1/(2/4))=2/(3/2+4/2)=4/7=57.1%. 

 
Case study 3.1. Prevalence and Quetelet coefficients 
 
If one looks at the record of the screening device according to Table 3.6, 4 true 

cases of 4 diagnosed as such, and compares that with the prevalence of the cancer 
at the sample, 3 cases of 200 – the difference is impressive indeed. This difference 
is exactly what is caught up in the concept of Quetelet coefficient q(l/k) (see sec-
tion 2.3.3) at row k=1 and column l=1. This takes the relative difference between 
the conditional probability P(1/1)=2/4 and the average probability P(l=1)=3/200 
which is referred to sometimes as the prevalence: q(1/1)=(2/4-3/200)/(3/200)= 
2*200/(3*4)-1=32.33=3233%, quite a change. This high value probably explains 
the difference in sensitivity and specificity between Tables 3.6 and 3.5.  
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Indeed, a similar Quetelet coefficient at Table 3.5 is q(1/1)=94*200/(101*95) – 

1 =0.96=96%, a less than a 100% increase, which may convey the idea that Table 
3.5 is much more balanced than Table 3.6. The accuracy measure works well at 
balanced tables and it does not at those that are not. 

F3.2.3 Accuracy and related measures: Formulation 

In general, the situation can be described by a confusion, or contingency, table 
between two sets of categories related to the class being predicted (1 or not) and 
the true class (1 or not), see Table 3.5. Of course, if one changes the class of inter-
est, the errors will remain errors, but their labels will change: false positives re-
garding class 1 are false negatives when the focus is on class 2, and vice versa.  

 
Among popular indexes scoring the error or accuracy rates are the following: 
 

FP rate = FP/(FP+TN) – the proportion of false positives among those not in 1; 1-
FP rate is referred to sometimes as specificity – it shows the proportion of correct 
predictions among other, not class 1, entities.  

 
TP rate = TP/(TP+FN) – the proportion of true positives in class 1; in information 
retrieval, this frequently is referred to as recall or sensitivity. 

 
Table 3.7. A statistical representation of the match between the true class and 

predicted class. The entries are counts of the numbers of co-occurrences. 
           

          True class   
 1                 Not Total  

TP+FP  Predicted 1 True         False      
 Class Positives   Positives  

FN+TN Not  False       True  
Negatives     Negatives  

        Total TP+FN         FP+TN N  
 

Precision = TP/(TP+FP) – the proportion of true positives in the predicted class 1. 
 
These reflect each of the possible errors separately. There are indexes that try 

to combine all the errors, too. Among them the most popular are: 
 

Accuracy = (TP+TN)/N – the total proportion of accurate predictions. Obviously, 
1-Accuracy is the total proportion of errors. 
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F-measure= 2/(1/Precision + 1/Recall) – the harmonic average of Recall and Pre-
cision. 

 
The latter measure is getting more popularity than the former because the Ac-

curacy counts both types of errors  equally, which may be at odds with the com-
mon sense in those frequent situations at which errors of one type are “more ex-
pensive” than the others. Recall, for example, the case of medical diagnostics in 
Tables 3.5 – 3.6: a tumor wrongly diagnosed as malignant would cost much less 
than the other way around when a deadly tumor is diagnosed as benign. F-
measure, to some extent, is more conservative because it, first, combines rates 
rather than counts, and, second, utilizes the harmonic mean which tends to be 
close to the minimum of the two, as can be seen from the statements in Q.33 and 
Q.3.4. 

 
Q.3.3. Consider two positive reals, a and b, and assume, say that a <b. Prove 

that the harmonic mean, h=2/(1/a+1/b) stays within the interval between a and 2a 
however large the difference b-a is. A. Take b be b=ka at some k>1. Then 
h=2/(1/a+1/(ka))=2ka/(1+k). The coefficient at a, 2k/(1+k), is less than 2, which 
proves the statement. 

 
Q.3.4. Consider two positive real values, a and b, and prove that their mean, 

m=(a+b)/2, and harmonic mean, h=2/(1/a+1/b), satisfy equation mh=ab. A. Take 
the product mh=[(a+b)/2][2/(1/a+1/b)] and perform elementary algebraic opera-
tions. 
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Figure 3.6. ROC curves for two classifiers; that of a is superior to that of b. 
 
More elaborate representation of errors of the two types can be achieved with 

the so-called receiver operating characteristics (ROC) graphs analysis (see, for ex-
ample, Fawcett 2006). ROC graphs are especially suitable in the cases of classifi-
ers that have a continuous output such as Bayes classifiers. ROC graph is a 2D 
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Cartesian plane plotting TP rate against FP rate so that the latter is shown on x-
axis and the former, on y-axis (see Figure 3.6) 

 
To be specific, let us take a Bayes classifier’s rule in (3.4) and change the ratio 

p2/p1 for an arbitrary threshold d>0.  Take now d=d1 for a specific d1, so that the 
rule now predicts class 1 if f1(x)/f2(x) > d1. Count the proportions of true and false 
positives, tp1 and fp1, at this threshold and put the point (fp1, tp1) onto a ROC 
graph. Then change d to d2 and count the rates, tp2 and fp2, at this threshold. If, 
say, d2> d1, then the TP rate can only decrease, because the number of positive 
predictions can only decrease. The FP rate, in a regular case, should increase at 
d2>d1 so that point (fp2, ft2) would go to the right and above the former point on 
ROC plot. In this way, by step-by-step changing the threshold d, one can obtain a 
ROC curve such as curves “a” and “b” on plot Figure 3.6. Such a curve can be 
utilized as a characteristic of the classifier under consideration that can be uzed, 
for instance, for selection of suitable levels of TP and FP rates.  In the case shown 
on Figure 3.6, one can safely claim that classifier “a” is superior to that of “b”, be-
cause at each FP rate level, TP rate of “a” is greater than that of “b”. 

3.3 Linear regression 

P3.3 Linear regression: Presentation 

Let us extend the notion of linear regression from the bivariate case considered 
in section 2.1. to multivariate case, when several features can be used as predictors 
for a target feature. 

  
Case study 3.2. Linear regression for Market town data  
Consider feature Post expressing the number of post offices in Market towns (Table 0.4 

on p. 16-17) and try to relate it to other features in the table. It obviously relates to the 
population. For example, towns with population of 15,000 and greater are those and only 
those where the number of post offices is 5 or greater. This correlation, however, is not as 
good as to give us more guidance in predicting Post from the Population. For example, at 
the seven towns whose population is from 8,000 to 10,000 any number of post offices from 
1 to 4 may occur, according to the table. This could be attributed to effects of services such 
as a bank or hospital present at the towns. Let us specify a set of features in Table 0.4 that 
can be thought of as affecting the feature Post, to include in addition to Population some 
other features –  PS-Primary schools, Do - General Practitioners, Hos- Hospitals, Ba- 
Banks, Sst - Superstores, and Pet– Petrol Stations; seven features altogether, taken as the 
set of input variables (predictors). 
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What we want is to establish a linear relation between the set and target feature Post. A 

linear relation is an equation representing Post as a weighted sum of input features plus a 
constant intercept; the weights can be any reals, not necessarily positive. If the relation is 
supported by the data, it can be used for various purposes such as analysis, prediction and 
planning. 

 
Table 3.6. Weight coefficients of input features at Post Office as target variable for 

Market towns data. 
 

Feature    Weight  
    0.0002 Pop_Res  
    0.1982 PSchools  
    0.2623 Doctors  
   -0.2659 Hospitals  
    0.0770 Banks  
    0.0028 Superstores  
   -0.3894 Petrol  
    0.5784 Intercept  

 
In the example of seven Market town features used for linearly relating them to Post Of-

fice feature, the least-squares optimal weight coefficients are presented in Table 3.6. Each 
weight coefficient shows how much the target variable would change on average if the cor-
responding feature is increased by a unity, while the others do not change. One can see that 
increasing population by a thousand would give a similar effect as adding a primary school, 
about 0.2, which may seem absurd in the example as Post Office variable can have only in-
teger values. Moreover, the linear function format should not trick the decision maker into 
thinking that increasing different input features can be done independently: the features are 
obviously not independent so that increase of, say, the population will lead to respectively 
adding new schools for the additional children. Still, the weights show relative effects of 
the features – according to Table 3.6, adding a doctor’s surgery in a town would lead to 
maximally possible increase in post offices. The maximum value is assigned to the inter-
cept in this case. What this may mean? Is it the number of post offices in an empty town 
with no population, hospitals or petrol stations? Certainly not. The intercept expresses that 
part of the target variable which is relatively independent of the features taken into account. 
It should be also pointed out that the weight values are relative not to just feature concepts 
but specific scales in which features measured. Change of a feature scale, say 10-fold, 
would result in a corresponding, inverse, change of its weight (due to the linearity of the re-
gression equation). This is why in statistics, the relative weights are considered for the 
scales expressed in units of the standard deviation. To find them, one should multiply the 
weight for the current scale by the feature’s standard deviation (see Table 3.7). 

 
The standardized weights are well justified when input features are mutually 

uncorrelated – indeed, they show the pair-wise correlation with the target feature. 
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Yet in a situation of correlated features, like this, they seem to have much less 
definite interpretation, except for showing the changes of the target in units of the 

 
Table 3.7. Standardized weight coefficients of input features at Post Office as target 

variable for Market towns. 
 
 Weights with partial  Determination Feature Weights in  
 
 
 
 
 
 
 
 
 
 

standard deviations, although some claim that they also reflect feature’s correla-
tion with the target or even importance for predicting the target. An argument 
against their usage as a correlation measure is that, in fact, a regression coefficient 
multiplied by the standard deviation loses its “purity” as a measure of correlation 
to the target at constant levels of the other features because the standard deviation 
does not pertain to constant features. An argument against their usage as measures 
of importance for prediction is that the standardized coefficient has nothing to do 
with the change of the determination coefficient when the corresponding feature is 
removed from the equation of regression.  

 
J. Bring (1994) proposes to kill two birds with one stone: to clean up the stan-

dard deviations from the non-constancy of the other features, which are claimed to 
reflect the changes in the determination coefficients. Specifically, take the vari-
ance of a feature and take off the proportion of it unexplained by the linear regres-
sion of it through the other features. The square root of the result represents the 
partial standard deviation, which is proportional to the so-called “t-value”, and, in 
the original squared form, to the change of the determination coefficient inflicted 
by the removal of the feature from the list of the explanatory variables (Bring 
1994).  Unfortunately, this is not that simple, as the next case study 3.3 shows. 

 
Case study 3.3. Using feature weights standardized. 
 
Table 3.8 presents the feature weights standardized with both the original and partial 

standard deviations as well as the absolute reductions of the original determination coeffi-
cient 0.8295 after removal of the corresponding variables. There is a general agreement be-
tween the absolute values of the first column and those in the third column, but the second 
column has little in common with either of them. A general analysis of a simpler problem 

standard deviation 
scales 

standard deviations coefficient 
 reduction 

0.0247 1602.00     1.3889 Pop_Res 
0.0077       1.02     0.5419 PSchools 
0.0055       0.64     0.3414 Doctors 
0.0023       0.41    -0.1542 Hospitals 
0.0059       2.27     0.3376 Banks 
     0       1.07     0.0048 Superstores 
0.0251       0.96    -0.6375 Petrol 
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of relation between the regression coefficients and correlation coefficients between the tar-
get and input features can be found in Waller and Jones (2010).  

 
Amazingly, the convenient standardization involves negative weights, specifically at 

features Petrols and Hospitals. This can be an artifact of the method, related to the effect of 
“replication” of features. One can 

 
 Table 3.8. Different indexes to express the idea of importance of a feature in the Post 

regression problem. 

Feature Weights in  Standard  Weights in standardized 
natural scales, w deviations, s  scales, w∗s 

    1.3889     6193.2     0.0002 Pop_Res 
    0.5419     2.7344     0.1982 PSchools 
    0.3414     1.3019     0.2623 Doctors 
   -0.1542     0.5800    -0.2659 Hospitals 
    0.3376     4.3840     0.0770 Banks 
    0.0048     1.7242     0.0028 Superstores 
   -0.6375     1.6370    -0.3894    Petrol 

 
think of Hospitals being a double for Doctors, and Petrol, for Superstores. Thus, before 
jumping to conclusions, one should check whether the minus disappears if the “replicas” 
are removed from the set of features. As Table 3.9 shows, not in this case: the negative 
weights remain, though they slightly change, as well as other weights. This illustrates that 
the interpretation of linear regression coefficients as weights should be cautious and re-
strained. 

 
In our example, determination coefficient ρ2= 0.83, that is, the seven features explain 

83% of the variance of Post Office feature, and the multiple correlation is ρ=0.91. Curi-
ously, the reduced set of five features (see Table 3.2) contributes almost the same, 82.4% of 
the variance of the target variable. This may make one wonder whether just one Population 
feature could suffice for doing the regression. This can be tested with the 2D method de-
scribed in section 2.1 or with the nD method of this section.  

 
Table 3.9. Weight coefficients for reduced set of features at Post Office as target variable 
for Market towns data. 

 
 

Feature    Weight  
    0.0003 POP_RES  
    0.1823 PSchools  
   -0.3167 Hospitals  
    0.0818 Banks  
   -0.4072 Petrol  
    0.5898 Intercept 
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According to the formulation of the nD method further on, the estimated parameters 

must be feature weight coefficients – no room for an intercept in the formula. To accom-
modate the intercept, a fictitious feature whose all values are unities is introduced. That is, 
an input data matrix X with two columns is to be used: one for the Population feature, the 
other for the fictitious variable of all ones. According to (3.6), this leads to the slope 0.0003 
and intercept 0.4015, though with somewhat reduced determination coefficient, which is 
ρ2= 0.78 in this case. From the prediction point of view this may be all right, but the re-
duced feature set looses on interpretation. 

F3.3 Linear regression: Formulation 

The problem of linear regression can be formulated as a particular case of the 
correlation learning problem with just one quantitative target variable u and linear 
admissible rules so that 

 
u = w1x1+w2x2+…+wpxp+w0

where w0, w1,…, wp are unknown weights, parameters of the model. 
 

For any entity i =1, 2, …, N, the rule-computed value of u 
 
                                        ûi = w1xi1+w2xi2+…+wpxip+w0 
 

differs from the observed one by di = |ûi – ui|, which may be zero –  when the pre-
diction is exact. To find w1, w2, …, wp, w0, one can minimize the summary square 
error 

 
      D2 = ∑idi

2 = ∑i (ui –w1*xi1-w2*xi2-…-wp*xip-w0)2     (3.7) 
 

over all possible parameter vectors w = (w0, w1,…,wp). 
 
To make the problem treatable in terms of linear operations, a fictitious feature 

x0 is introduced such that all its values are 1: xi0 =1 for all i = 1, 2, …, N. Then cri-
terion D2 can be expressed as D2 = ∑i (ui -<wi,xi>)2  using the inner products 
<w,xi> where w=(w0, w1,…,wp) and  xi=(xi0, xi1 , …, xip) are (p+1)-dimensional 
vectors of which all xi are known whereas w is not. From now on, the unity feature 
x0 is assumed to be part of data matrix X in all correlation learning problems.  

 
The criterion D2 in (3.7) is but the squared Euclidean distance between the N-

dimensional target feature column u=(ui) and vector û=Xw whose components are 
ûii= <w,xi>. Here X is N×(p+1) matrix whose rows are xi (augmented with the 
component xi0=1, thus being (p+1)-dimensional) so that Xw is the matrix product 
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of X and w. Vectors defined as Xw for all possible w’s form (p+1)-dimensional 
vector space, referred to as X-span.  

 
Thus the problem of minimization of (3.7) can be reformulated as follows: 

given target vector u, find its projection û in the X-span space. The global solution 
to this problem is well-known: it is provided by a matrix PX applied to u:  

 
û = PXu     (3.8) 

 
where PX is the so-called orthogonal projection operator, an N×N matrix, defined 
as: 

 
      PX = X (XTX)-1XT    (3.9) 

 
so that  

                      û = X (XTX)-1XTu and w=(XTX)-1XTu.  (3.10) 
 
Matrix PX projects every N-dimensional vector u to its nearest match in the 

(p+1)-dimensional X-span space. The inverse (XTX)-1 does not exist if the rank of 
X, as it may happen, is less than the number of columns in X, p+1, that is, if ma-
trix XTX is singular or, equivalently, the dimension of X-span is less than p+1. In 
this case, the so-called pseudo-inverse matrix (XTX)+ can be used as well. This is 
not a big deal computationally: for example, in MatLab one just puts pinv(XTX) 
instead of inv(XTX). 

 
The quality of approximation is evaluated by the minimum value D2 in (3.7) 

averaged over the number of entities and related to the variance of the target vari-
able. Its complement to 1, the determination coefficient, is defined by the equation 

 
ρ2 = 1- D2/(Nσ2(u))    (3.11) 

 
The determination coefficient shows the proportion of the variance of u ex-

plained by the linear regression. Its square root, ρ, is referred to as the coefficient 
of multiple correlation between u and X = {x0, x1,  x2, …, xp}. 
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3.4 Linear discrimination and SVM 

P3.4 Linear discrimination and SVM: Presentation 

Discrimination is an approach to address the problem of drawing a rule to dis-
tinguish between two classes of entity points in the feature space, a “yes” class 
and “no” class, such as for instance a set of banking customers in which a, typi-
cally very small, subset of fraudsters constitutes the “yes” class and that of the 
others the “no” class. On Figure 3.7, entities of “yes” class are presented by circles 
and of “no” class by squares.  

 
The problem is to find a function u=f(x) that would separate the two classes in 

such a way that f(x) is positive for all entities in the “yes” class and negative for all 
the entities in the “no” class. When the discriminant function f(x) is assumed to be 
linear, the problem is of linear discrimination. It differs from that of the linear re-
gression in that aspect that the target values here are binary, either “yes” or “no”, 
so that this is a classification rather than regression, problem. 

 
The classes on Figure 3.7 can be discriminated by a straight – dashed –  line in-

deed. The dotted vector w, orthogonal to the “dashed line” hyperplane, represents 
a set of coefficients at the linear classifier represented by the dashed line. Vector w 
also shows the direction at which function f(x)=<w,x>− b grows. Specifically,  

 + side     

x1

         x2   

+ side     

x

         x2   

              (a)                                                                 (b) 

 
Figure 3.7. A geometric illustration of a separating hyper-plane between 

classes of circles and squares. The dotted vector w on (a) is orthogonal to the hy-
per-plane: its elements are hyper-plane coefficients, so that it is represented by 
equation <w,x> − b = 0. Vector w also points at the direction: at all points above 
the dashed line, the circles included, function f(x)= <w,x> − b is positive. The 
dotted lines on (b) show the margin, and the squares and circle on them are sup-
port vectors. 

 
f(x) is 0 on the separating hyperplane, and it is positive above and negative be-
neath that. With no loss of  generality, w can be assumed to have its length equal 
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to unity. Then, for any x, the inner product <w,x> expresses the length of vector x 
along the direction of w.  

 
To find an appropriate w, even in the case when “yes” and “no” classes are 

linearly separable, various criteria can be utilized. A most straightforward classi-
fier is defined as follows: put 1 for “yes” and  −1 for “no” and apply the least-
squares criterion of linear regression. This produces a theoretically sound solution 
approximating the best possible – Bayesian – solution in a conventional statistics 
model. Yet, in spite of its good theoretical properties, least-squares solution may 
be not necessarily the best at some data configurations. In fact, it may even fail to 
separate the positives from negatives when they are linearly separable. Consider 
the following example. 

 
Worked example 3.1. A failure of Fisher discrimination criterion 
 
Let there be 14 2D points presented in Table 3.10 (first line) and displayed in Figure 3.8 

(a). Points 1,2,3,4,6 belong to the positive class (dots on Figure 3.8), and the others to the 
negative class (stars on Figure 3.8). Another set, obtained by adding to each of the compo-
nents a random number, according to the normal distribution with zero mean and 0.2 the 
standard deviation; is presented in the bottom line of Table 3.10 and Figure 3.8 (b). The 
class assignment for the disturbed points remains the same.  

 
Table 3.10. X-y coordinates of 14 points as given originally and perturbed with a white 

noise of standard deviation 0.2, that is, generated from the Gaussian distribution N(0,0.2). 
 

Entity # 1        2        3       4       5       6       7        8        9      10     11      12      13     14 
Original data x 

y 
3.00 3.00  3.50  3.50  4.00  1.50   2.00   2.00   2.00  1.50  2.00   2.00   2.00  1.50 
0.00 1.00  1.00  0.00  1.00  4.00   4.00   5.00   4.50  5.00  4.00   5.00   4.50  5.00 

Perturbed data x 
y 

2.93 2.83  3.60  3.80  3.89  1.33   1.95   2.13   1.83  1.26  1.98   1.99   2.10  1.38 
-0.03 0.91 0.98  0.31  0.88  3.73   4.09   4.82   4.51  4.87  4.11   5.11   4.46  4.59 

  
The optimal vectors w according to formula (3.7) are presented in Table 3.11 as well as that 
for the separating, dotted, line in Figure 3.8 (d). 

 
Table 3.11. Coefficients of straight lines on Figure 3.8. 
 

                     Coefficients at 
 x y Intercept 

LSE at Original data -1.2422 -0.8270 5.2857 
LSE at Perturbed data -0.8124   -0.7020 3.8023 
Dotted at Perturbed data -0.8497 -0.7020 3.7846 
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Note that the least-squares solution depends on the values assigned to classes, 
leading potentially to an infinite number of possible solutions under different nu-
merical codes for “yes” and “no”. A popular discriminant criterion of minimizing 
the ratio of a “within-class error” over “out-of-class error”, proposed by R. Fisher 
in his founding work of 1936, in fact, can be expressed with the least-squares cri-
terion as well. Just change the target as follows: assign N/N1, rather than +1,to 
“yes” class and −N/N2 to “no” class, rather than −1 (see Duda, Hart, Stork, 2001, 
pp. 242-243). This means that Fisher’s criterion may also lead to a failure in a lin-
ear separable situation. 
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Figure 3.8. Figures (a) and (b) represent the original and perturbed data sets. 

The least squares optimal separating line is added in Figures (c) and (d), shown by 
solid. Entity 5 falls into “dot” class according to the solid line in Figure (d), a real 
separating line is shown dotted (Figure (d)). 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.9. Illustrative example of two-dimensional entities belonging to two 

classes, circles and squares. The separating line in the space of Gaussian kernel is 
shown by the dashed oval. The support entities are shown by black.  
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By far the most popular set of techniques, Support Vector Machine (SVM), 

utilize a different criterion – that of maximum margin.   The margin of a point x, 
with respect to a hyperplane, is the distance from x to the hyperplane along its 
perpendicular vector w (Figure 3.8 (a)), which is measured by the absolute value 
of inner product <w,x>. The margin of a class is defined by the minimum value of 
the margins of its members. Thus the criterion requires, like L∞, finding such a 
hyperplane that maximizes the minimum of class margins, that is, crosses the 
middle of line between the nearest entities of two classes. Those entities that fall 
on the margins, shown by dotted lines on Figure 3.8 (b), are referred to as support 
vectors; this explains the method’s title. 

 
It should be noted that the classes are not necessarily linearly separable; more-

over in most cases they are not. Therefore, the SVM technique is accompanied 
with a non-linear transformation of the data into a high-dimensional space which 
is more likely to make the classes linear-separable. Such a non-linear transforma-
tion is provided by the so-called kernel function. The kernel function imitates the 
inner product in the high-dimensional space and is represented by a between-
entity similarity function such as that defined by formula (3.7).  

The intuition behind the SVM approach is this: if the population data – 
those not present in the training sample – concentrate around training data, then 
having a wide margin would keep classes separated even after other data points 
are added (see Figure 3.9). One more consideration comes from the Minimum De-
scription Length principle: the wider the margin, the more robust the separating 
hyperplane is and the less information of it needs to be stored. A criticism of the 
SVM approach is that the support vector machine hyperplane is based on the bor-
derline objects – support vectors – only, whereas the least-squares hyperplanes 
take into account all the entities so that the further away an entity is the more it 
may affect the solution, because of the quadratic nature of the least-squares crite-
rion. Some may argue that both borderline and far away entities can be rather ran-
domly represented in the sample under investigation so that neither should be 
taken into account in distinguishing between classes: it is some “core” entities of 
the patterns that should be separated – however, there has been no such an ap-
proach taken in the literature so far. 

 
Worked example 3.2. SVM for Iris dataset 
 
Consider Iris dataset standardized by subtracting, from each feature column, its mid-

range and dividing the result by the half-range. Apply the SVM approach to this data, with-
out applying any specific kernel function, that is, using the inner products of the row-
vectors as they are, which is referred to sometimes as the case of linear kernel function. 

 
Take Gaussian kernel in (3.15) to find a support vector machine surface separating Iris 

class 3 from the rest.   
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Table 3.12. List of support entities in the problem of separation of taxon 3 (entities 101 to 
150) in Iris data set from the rest (thanks to V.V. Sulimova for computation).   
 

N      Entity      Alpha  N        Entity         Alpha 
 1        18         0.203    
 2        28         0.178    
 3        37         0.202    
 4        39         0.672    
 5        58       13.630    
 6        63     209.614    
 7        71         7.137    
 8        78     500    
 9        81       18.192    
10       82     296.039    
11       83     200.312      

12         105             2.492    
13         106           15.185    
14         115           52.096    
15         118           15.724    
16         119         449.201    
17         127         163.651    
18         133         500    
19         135             5.221    
20         139           16.111    
21         150           26.498 

 
The resulting solution embraces 21 supporting entities (see Table 3.12), along with their 

“alpha” prices reaching into hundreds and even, on two occasions, to the maximum bound-
ary 500 embedded in the algorithm. 

 
There is only one error with this solution, entity 78 wrongly recognized as belonging to 

taxon 3. The errors increase when we apply a cross-validation techniques, though. For ex-
ample, “leave-all-one-out” cross-validation leads to nine errors: entities 63, 71, 78, 82 and 
83 wrongly classified as belonging to taxon 3 (false positives), while entities 127, 133, 135 
and 139 are classified as being out of taxon 3 (false negatives). 

 
Q.3.5. Why only 10, not 14, points are drawn on Figure 3.9 (b)? A. Because each 
of the points 11-14 doubles a point 7-10.  

 
Q.3.6. What would change if the last four points are removed so that only points 
1-10 remain? A. The least-squares solution will be separating again.  

F3.4 Linear discrimination and SVM: Formulation 

F3.4.1 Linear discrimination  

The problem of linear discrimination can be stated as follows. Let a set of N en-
tities in the feature space, xi=(xi0, xi1,  xi2, …,  xip), i=1,2,…,N, is partitioned in two 
classes, sometime referred to as patterns, a “yes” class and a “no” class, such as 
for instance a set of banking customers in which a, typically very small, subset of 
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fraudsters constitutes the “yes” class and that of the others the “no” class. The 
problem is to find a function u=f(x0, x1,  x2, …, xp) that would discriminate the two 
classes in such a way that u is positive for all entities in the “yes” class and nega-
tive for all entities in the “no” class. When the discriminant function is assumed to 
be linear so that u = w1x1+w2x2+…+wpxp+w0 at constant w0, w1, …, wp,  the prob-
lem is of linear discrimination. It differs from that of the linear regression in only 
that aspect that the target values ui here are binary, either “yes” or “no”, so that 
this is a classification rather than regression, problem.   

 
To make it quantitative, define ui=1 if i belongs to the “yes” class and ui= -1 if 

i belongs to the “no” class. The intercept w0 is referred to, in the context of the dis-
crimination / classification problem, as bias.  

 
A linear classifier is defined by a vector w so that if ûi= <w,xi> >0, predict 

ůi=1; if ûi = <w,xi>  < 0, then predict ůi= -1; that is, ůi = sign(<w,xi>) . (Here 
the sign function is utilized as defined by the condition that sign(a)=1 when a>0, 
=-1 when a<0, and =0 when a=0.) 

 
To find an appropriate w, even in the case when “yes” and “no” classes are 

linearly separable, various criteria can be utilized. A most straightforward classi-
fier is defined by the least-squares criterion of minimizing (3.3). This produces  

 
w=(XTX)-1XTu    (3.12) 

 
Note that formula (3.12) leads to an infinite number of possible solutions be-

cause of the arbitrariness in assigning different u-labels to different classes. A 
slightly different criterion of minimizing the ratio of the “within-class error” over 
“out-of-class error” was proposed by R. Fisher (1936). Fisher’s criterion, in fact, 
can be expressed with the least-squares criterion if the output vector u is changed 
for uf as follows: put N/N1 for the components of the first class, instead of +1, and 
put –N/N2 for the entities of the second class, instead of –1. Then the optimal w 
(3.12) at u=uf minimizes the Fisher’s discriminant criterion (see Duda, Hart, 
Stork, 2001, pp. 242-243). 

 
Solution (3.12) has two properties related to the Bayes decision rule. It appears 

the squared summary difference between the least-square error linear decision rule 
function <w,x> and Bayes function B(x) is minimum over all possible w (Duda, 
Hart, Stork, p. 243-245). Moreover, the least-squares linear decision rule is the 
Bayes function B(x) if the class probability distributions f1(x) and f2(x) are Gaus-
sian with coinciding covariance matrices, so that they can be expressed with for-
mula: 

 
fi(x)=exp[-(x-μ i)TΣ-1(x-μ i)/2]/[(2π)p|Σ|]1/2   

 (3.13) 
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where μi is the central point and Σ the pxp covariance matrix of the Gaussian 

distribution. In fact, in this case the optimal w=Σ-1(μ1 -μ 2) (see Duda, Hart, Stork, 
p. 36-40). 

F3.4.2 Support vector machine (SVM) criterion 

Another criterion would put the separating hyperplane just in the middle of an 
interval drawn through closest points of the different patterns. This criterion 
produces what is referred to as the support vector machine since it heavily relies 
on the points  involved in the drawing of the separating hyperplane (as shown on 
the right of Figure 3.9). These points are referred to as support vectors. A natural 
formulation would be like this: find a hyperplane H: <w,x>=b with a normed w to 
maximize the minimum of absolute values of distances |<w,xi> - b| to H from 
points xi belonging to each of the classes. This, however, is rather difficult to 
associate with a conventional formulation of an optimization problem because of 
the following irregularities: 

ts  

(i)  an absolute value to maximize,  
(ii) the minimum over points from each of the classes, and  
(iii) w being of the length 1, that is, normed.  
 
However, these all can be successfully tackled. The issue (i) is easy to handle, 

because there are only two classes, on the different sides of H. Specifically, the 
distance is <w,xi>−b for “yes” class and −<w,xi>+b for “no” class – this removes 
the absolute values. The issue (ii) can be taken care of by uniformly using 
inequality constrain

 
   <w,xi>−b ≥ λ for xi in “yes” class and  
− <w,xi> + b ≥  λ for xi in “no” class 
 

and maximizing the margin λ with respect to these constraints. The issue (iii) can 
be addressed by dividing the constraints by λ so that the norm of the weight vector 
becomes 1/λ, thus inversely proportional to the margin λ. Moreover, one can 
change the criterion now because the norm of the ratio w/λ is minimized when λ is 
maximized. Denote the “yes” class by ui=1 and “no” class by ui=−1. Then the 
problem of deriving a hyperplane with a maximum margin can be reformulated, 
without the irregularities, as follows: find b and w such that the norm of w or its 
square, <w,w>, is minimum with respect to constraints   

 
ui (<w,xi>−b )≥ 1  (i=1,2,…,N)  

This is a problem of quadratic programming with linear constraints, which is 
easier to analyze in the format of its dual optimization problem. The dual problem 
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can be formulated by using the so-called Lagrangian, a common concept in opti-
mization, that is, the original criterion penalized by the constraints weighted by the 
so-called Lagrangian multipliers that are but penalty rates. Denote the penalty rate 
for the violation of i-th constraint by αi. Then the Lagrangian can be expressed as 

 
L(w,b,α)= <w,w>/2 – Σi αi (ui (<w,xi>- b)-1) , 

 
where <w,w> has been divided by 2 with no loss of generality, just for the sake of 
convenience. The optimum solution minimizes L over w and b, and maximizes L 
over non-negative α. The first order optimality conditions require that all partial 
derivatives of L are zero at the optimum, which leads to equations Σiαiui=0 and 
w=Σiαiuixi. Multiplying the latter expression by itself leads to equation 
<w,w>=Σijαiαjuiuj<xi,xj>. The second item in Lagrangian L becomes equal to 
Σiαiui<w,xi> − Σiαiuib −Σiαi= <w,w> − 0 − Σiαi. This leads us to the following, 
dual, problem of optimization regarding the Lagrangian multipliers, which is 
equivalent to the original problem: Maximize criterion 

 
Σiαi − Σijαiαjuiuj<xi,xj>/2   (3.14) 

 
subject to Σiαiui=0 and αi ≥0. 

 
Support vectors are defined as those xi for which penalty rates are positive, 

αi>0, in the optimal solution – only they contribute to the optimal vector 
w=Σiαiuixi; the others have zero coefficients and disappear.  

 
It should be noted that the margin constraints can be violated, which is not 

difficult to take into account – by using non-negative values ηi expressing the 
sizes of violations: 

 as 

 
ui(<w,xi>−b )≥ 1-ηi  (i=1,2,…,N) 

 
in such a way that they are minimized in a combined criterion <w,w>/2+ CΣiηi 
where C is a large “reconciling” coefficient that is a user-defined parameter. The 
dual problem for the combined criterion remains almost the same as above, in 
spite of the fact that an additional set of dual variables, βi, needs to be introduced 
as corresponding to the constraints ηi≥0. Indeed, the Lagrangian for the new 
problem can be expressed

 
L(w,b,α,β)= <w,w>/2 – Σi αi (ui (<w,xi>– b) –1) –Σiηi(αi +βi – C),   

 
which differs from the previous expression by just the right-side item. This im-
plies that the same first-order optimality equations hold, Σiαiui=0 and w=Σiαiuixi, 
plus additionally αi +βi = C. These latter equations imply that C≥αi≥0 because βi 
are non-negative. 
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Since the additional dual variables are expressed through the original ones, βi = 

C – αi, the dual problem can be shown to remain unchanged and it can be solved 
by using quadratic programming algorithms (see Vapnik 2001 and Schölkopf and 
Smola 2005). Recently, approaches have appeared for solving the original 
problem as well (see Groenen 2008). 

F3.4.3 Kernels 

Situations at which patterns are linearly separable are very rare; in real data, 
classes are typically well intermingled with each other. To attack these typical 
situations with linear approaches, the following trick can be applied. The data are 
nonlinearly transformed into a much higher dimensional space in which, because 
of both nonlinearity and higher dimension, the classes may be linearly separable. 
The transformation can be performed only virtually because of specifics of the 
dual problem: dual criterion (3.11) depends not on individual entities but rather 
just inner products between them. This property obviously translates to the 
transformed space, that is, to transformed entities. The inner products in the 
transformed space can be computed with the so-called kernel functions K(x,y) so 
that in criterion (3.11) inner products <xi,xj> are substituted by the kernel values 
K(xi,xj).  Moreover, by substituting the expression w=Σiαiuixi into the original 
discrimination function f(x)=<w,x>−b we obtain its different expression f(x)= 
Σiαiui<x,xi>−b, also involving inner products only, which can be used as a kernel-
based decision rule in the transformed space: x belongs to “yes” class if 
ΣiαiuiK(x,xi) − b>0.  

 
It is convenient to define a kernel function over vectors x=(xv) and y=(yv) 

through the squared Euclidean distance d2 (x,y)= (x1-y1)2+…+(xV-yi)2 because 
matrix (K(xi,xj)) in this case is positive definite – a defining property of matrices of 
inner products. Arguably, the most popular is the Gaussian kernel defined by: 

 
K(x,y)=exp(-d2(x,y))    (3.15) 

 
Q.3.7. Consider a full set BB

3: 
n of 2  binary 1/0 vectors of length n like those 

presented by columns below for n=

n

 
1  0  0  0  0  1  1  1  1 
2 0  0  1  1  0  0  1  1 
3  0  1  0  1  0  1  0  1 
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These columns can be considered as integers coded in the binary number sys-
tem; moreover, they are ordered from 0 to 7. Prove that this set shutters any subset 
of n (or less) points.  

A. Indeed, let S be a set of elements i1, i2,…, in in BBn that are one-to-one labeled 
by numbers from 1 to n. Consider any partition of S in two classes, S1 and S2. 
Assign 0 to each element of S1 and 1 to each element of S2.The partition follows 
that vector of Bn that corresponds to the assignment. 

 
Q.3.8. Consider set BBn defined above. Prove that its rank is n, that is, there are n 
columns in matrix BnB

ace. 

 that form a base of the space of n-dimensional vectors. 
A. Take, for example, n columns ep that contain unity at p-th position whereas 

other n-1 elements are zero (p=1, 2, …n). These obviously are mutually 
orthogonal and any vector x=(x1,…,xn) can be expressed as a linear combination 
x=Σp xpep, which proves that vectors ep form a base of the n-dimensional sp

 
Q.3.9. What is VC-dimension of the linear discrimination problem at an arbitrary 
dimension p≥2?  

A. p+1, because each subset of p points can be separated from the others by a 
hyperplane, but there can be such (p+1)-point configurations that cannot be shat-
tered using liner separators.       

3.5 Decision Trees  

P3.5.1 General: Presentation 

Decision tree is a structure used for learning and predicting quantitative or nomi-
nal target features. In the former case it is referred to as a regression tree, in the 
latter, classification tree. This structure can be considered a multivariate extension 
of contingency tables in such a way that only meaningful combinations of feature 
categories are involved. 
 
As illustrated on Figure 3.10, a decision tree recursively partitions the entity set 
into smaller clusters by splitting a parental cluster over a single feature. The root 
of a decision tree corresponds to the entire entity set. Each node corresponds to a 
subset of entities, cluster, and its children are the cluster’s parts defined by values 
of a single predictor feature x. Note that the trees on Figure 3.10 are binary: each 
interior node is split in two parts. This is a most convenient format, currently used 
in most popular programs. Only binary trees are considered in this section. 
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Decision trees are built from top to bottom in such a way that every split is made 
to maximize the homogeneity of the resulting subsets with respect to a desired tar-
get feature. The splitting stops either when the homogeneity is enough for a reli-
able prediction of the target feature values or when the set of entities is too small 
to consider its splits reliable. A function scoring the extent of homogeneity to de-
cide of the stopping is, basically, a measure of correlation between the partition of 
the entity set being built and the target feature.   

          
        
 

Sector:  Util/Ind                Retail                  NSup:   < 4                 4 or more  
                                                                                                                                              
       
  EC:  No            Yes                        ShaP:  > 30            < 30                                                                                    
                                                                                              

    A       B 

    C 

 
                                                                                                     

A B 

    C 

Figure 3.10. Decision trees for three product based classes of Companies, A, 
B, and C, made using categorical features, on the left, and quantitative features, on 
the right. 
 
When the process of building a tree is completed, each terminal node is assigned 
with a value of the target that is determined to be characteristic for that node, and 
thus should be predicted at the conditions leading to the node.  For example, both 
trees on Figure 3.10 are precise – each terminal class corresponds to one and only 
one product, which is the target feature, so that each of the trees give a precise 
conceptual description of all products by conjunctions of the corresponding branch 
values. For example, product A can be described as that which is not in Utility 
sector, nor E commerce utilized in the production process (left-side tree) or as that 
in which less than 4 suppliers are involved and the share price is greater than 30. 
Both descriptions are fitting here since both give no errors at all. 
 

Decision trees are very popular because they are simple to understand, use, and 
interpret. However, one should properly use them, because the decision rules pro-
duced with them can be overly simplistic and frequently imprecise. Their effec-
tiveness much depends on the features and samples selected for the analysis. As 
always in learning correlation, a simpler tree is preferred to a complex one be-
cause of the over-fitting problem: a complex tree is more likely reflect noise in the 
data rather than the true tendencies. 
 
In the next section, we discuss popular homogeneity scoring functions and then 
proceed to the process of classification tree building, in yet another section. 
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F3.5.1 General: Formulation 

To build a binary decision tree, one needs the following information: 
(a) set of input features X,  
(b) an output feature u,  
(c) a scoring function W(S,u) that scores admissible partitions S against 

the output feature,  
(d) rule for obtaining admissible partitions, 
(e) stopping criterion 
(f) rule for pruning long or unreliable branches, and 
(g) rule for the assignment of u-values to terminal nodes. 

   
Let us comment on these items: 

 
(a) The input features are, typically, quantitative or nominal. Quantitative 

features are handled rather easily by testing all possible splits of their 
ranges. More problematic are categorical features especially those with 
many categories because the number of possible binary splits can be very 
large. However, this issue does not emerge at all if categorical features 
are preprocessed into the quantitative format of binary dummy variables 
corresponding to individual categories (which is advocated in this text 
too, see more detail in section 4.1). Indeed, each of the dummy variables 
admits only one split – that separating the corresponding category from 
the rest, which reduces the number of possible splits to consider to the 
number of categories – an approach advocated by Loh and Shih (1997).  
A number of such splits can be done in sequence to warrant that any 
combination of categories is admissible in this approach too.  

Since this approach involves one feature at a time only, missing 
values are not of an issue, because all the relevant information such as 
means and frequencies can be reasonably well estimated from those val-
ues that are available – this is a stark contrast with the other multivariate 
techniques. 

(b) In principle, the decision tree format does not prevent from using multi-
ple target features – just single-target criteria should be summed up when 
there are several targets (Mirkin 1985). However, all current internation-
ally available programs involve only single target features. Depending on 
the scale of the target feature, the learning task  differs as well as termi-
nology. Specifically, if the target feature is quantitative, a decision tree is 
referred to as a regression tree, and if the target feature is categorical, a 
decision tree is referred to as a classification tree. Yet classification trees 
may differ on the learning task: (a) learning a partition, if the target is 
nominal, and (b) learning a category. This section focuses only on the 
task of learning a classification tree with a partitional target. 

(c) Given a decision tree, its terminal nodes (leaves) form a partition S, 
which is considered then against the target feature u with a scoring func-
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tion measuring the overall correlation W(S,u). This suggests a context of 
the analysis of correlation between two features, see sections 2.2 and 2.3. 
If the target u is quantitative, then a tabular regression of u over S should 
be analyzed and scored. Unfortunately, in the data mining literature, this 
natural approach is not appreciated; thus, the most natural scoring func-
tion, the correlation ratio, is not popular. In contrast, at a categorical tar-
get, two most popular scoring functions, Gini index and Pearson chi-
squared, fit perfectly in the framework of contingency tables and 
Quetelet indexes described in section 2.3, as will be shown in this section 
further on.  Moreover, it will be mathematically proven that these two 
can be considered as implementations of the same approach of maximiz-
ing the contribution to the data scatter of the target categories – the only 
difference being the way the dummy variables representing the categories 
are normalized: (i) no normalization to make it Gini index or (ii) nor-
malization by Poissonian standard deviations so that less frequent catego-
ries get more important, to make it Pearson chi-squared. This sheds a 
fresh light on the criteria and suggests the user a way for choosing be-
tween the two. 

(d) Admissible partitions conventionally are obtained by splitting the entity 
set corresponding to one of the current terminal nodes over one of the 
features. To make it less arbitrary, most modern programs do only binary 
splits. That means that any node may be split only in two parts: (i) that 
corresponding to a category and the rest for a categorical feature or (ii) 
given an a, those “less than a” and those “greater than a”, for a quantita-
tive feature. This text attends to this approach as well. All possible splits 
are tested and that producing the largest value of the criterion is actually 
made, after which the process is reiterated.  

(e) Stopping rule typically assumes a degree of homogeneity of sets of enti-
ties, that is, clusters, corresponding to terminal nodes and, of course, their 
sizes: too small clusters are not stable and should be excluded. 

(f) Pruning: In some programs, the size of a cluster is unconstrained so that 
in the process of splitting nodes over features, some split parts may be-
come very small and, thus, unreliable as terminal nodes. This makes it 
useful to prune the tree after it is computed, usually by merging the small 
subset nodes into greater agglomerations. This is typically done not ac-
cording to the splitting criterion W(S,u) but according to more local con-
siderations such as testing whether proportions of the target categories in 
a cluster are similar to those used at the assignment of u values to termi-
nal nodes or by removing nodes with small chi-squared values (see, for a 
review, Esposito et al. 1997).  

(g) Assigning a terminal node with a u category conventionally is done by 
just averaging its values over the node entities if u is quantitative or ac-
cording to the maximum probability of an u category. Then the quality of 
quantitative prediction is accessed, as usual, by computing the differ-
ences between observed and predicted values of u, and their variance of 
course. In the nominal target case, this leads to an obvious estimate of the 
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probability of the error: unity minus the maximum probability; these then 
are averaged over the terminal nodes of the decision tree. To make the er-
ror’s estimate more robust, cross-validation techniques are used. Con-
sider, say, a ten fold cross validation. The entity set is randomly divided 
into ten equal-sized subsets. Each of them is used as a testing ground for 
a decision tree built over the rest: these errors are averaged and given as 
the error’s estimate to the tree built over the entire entity set. These tech-
niques are beyond the scope of the current text. 

 
It should be mentioned that the assignment of a category to a terminal 

cluster in the tree can be of an issue in some situations: (i) if no obvious 
winning category occurs in the cluster, (ii) if the category of interest is 
quite rare, that is, when u’s distribution is highly skewed. In this latter 
case using Quetelet coefficients relating the node proportions with those 
in the entire set may help by revealing some great improvements in the 
proportions, thus leading to interesting tendencies discovered.  

3.5.2 Measuring correlation for classification trees 

P3.5.2 Three approaches to scoring the split-to-target correlation: 
Presentation 

The process of building a classification tree is, basically, a process of splitting 
clusters into smaller parts driven by a measure of correlation between the partition 
S being built and the target feature u. Since our focus here is the case of nominal 
u’s only, the target feature is represented by a partition T which is known to us on 
the training set.  

 
How to define a function w(S,T) to score correlation between the target parti-

tion T and partition S being built? Three possible approaches are: 
 

1. A popular idea is to use a measure of uncertainty, or impurity, of a par- 
tition and score the goodness of split S by the reduction of uncertainty 
achieved when the split is made. If it is Gini index, or nominal variance, 
which is taken as the measure of uncertainty, the reduction of uncertainty 
is the popular impurity function utilized in a popular decision tree build-
ing program CART (Breiman et al. 2004). If it is entropy, which is taken 
as the measure of uncertainty, the reduction of uncertainty is the popular 
Information gain function utilized in another popular decision tree build-
ing program C4.5 (Quinlan 1993). 
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2. Another idea would be to use a popular correlation measure defined over 

the contingency table between partitions S and T such as Pearson chi-
squared. Indeed Pearson chi-squared is used for building decision trees in 
one more popular program, SPSS (Green, Salkind 2003), as a criterion of 
statistical independence criterion, though, rather than a measure of asso-
ciation. Yet because Pearson chi-squared is equal to the summary relative 
Quetelet index (see section 2.3), it is a measure association, and it is in 
this capacity that Pearson chi-squared is used in this text. Moreover, both 
the impurity function and Information gain mentioned above also are cor-
relation measures defined over the contingency table as shown in the 
formulation part of this section. Indeed, the Information gain is just the 
mutual information between S and T, a symmetric function, and the im-
purity function, the summary absolute Qutelet index. 

 
3.   One more idea comes from the discipline of analysis of variance in statistic 

(see section 2.2):  the correlation can be measured by the proportion of  the 
target feature variance taken into account by the partition S. How come? 
The variance is a property of a quantitative feature, and we are talking of a 
target partition here. The trick is that each class of the target partition is 
represented by the corresponding dummy feature, which is equal to 1 at en-
tities belonging to the class and 0 at the rest. Each of them can be treated as 
quantitative, as explained in section 1.3, so that the summary explained 
proportion would make a measure of correlation between S and T. What is 
nice in this approach, that it is uniform across different types of feature 
scales: both categorical and quantitative features can be treated the same, 
which is not the case with other approaches. Although this approach has 
been advocated by the author for a couple of decades (see, for example, 
Mirkin 1996 and 2005), no computational program has come out of it so 
far. There is a good news though: both the impurity function and Pearson 
chi-squared can be expressed as the summary explained proportion of the 
target variance, under different normalizations of the dummy variables 
course. To get the impurity function (Gini index), no normalization is 
needed at all, and Pearson chi-squared emerges if each of the dummies is 
normalized by the square root of its frequency. That means that  Pearson 
chi-squared is underlied by the idea that more frequent classes are less con-
tributing. This might suggest the user to choose Pearson chi-squared if they 
attend to this idea, or, in contrast, the impurity function if they think that 
the frequencies of target categories are irrelevant to their case. 

 
There have been developed a number of myths about classification tree build-

ing programs and correlation scoring functions involved in them. The following 
comments are purported to shed light on some of them.  
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Comment 3.1. There is an opinion lurking in some comments on the web that of 
two popular programs CART (Breiman et al. 1984) and CHAID (Green and 
Salkind 2007), the former is more oriented at prediction whereas the latter, at de-
scription. The reason for this perhaps can be traced to the fact that CART involves 
the impurity function that is defined as the reduction in uncertainty whereas 
CHAID involves Pearson chi-squared as a measure of the deviation from statisti-
cal independence. Yet this opinion is completely undermined by bthe fact that 
they have very similar predictive powers shaped as the summary Quetelet indexes, 
the only difference being that one of them uses relative indexes, and the other 
abosolute ones (see Statements 3.5.2.1 (b) and 3.5.2.2 (b)). 
 
Comment 3.2. The difference between impurity function and Pearson chi-squared 
amounts to just different scaling options for the dummy variables representing 
classes of the target partition T (see items (c) in  Statements 3.5.2.1 and 3.5.2.2). 
The smaller T classes get rescaled to larger values, thus contributing more, when 
using Pearson chi-squared.  
  
Comment 3.3. Pearson chi-squared introduced to measure the deviation of a 
bivariate distribution from the statistical independence appears also to signify a 
purely geometric concept, the contribution to the data scatter (see (a) and (c) in 
Statement 3.5.2.2 on p. …). This leads to a different advice regarding the zeros in 
a contingency table. According to classical statistics, the presence of zeros in a 
contingency table contradicts the  hypothesis of statistical independence. How-
ever, in the context of data scatter decompositions, the chi-squared is just a contri-
bution with no statistical independence involved so that the presence of zeros is of 
no issue in this context. 

F3.5.2 Scoring functions for classification trees: Formulation. 

F.3.5.2.1  Conventional definitions and Quetelet coefficients 

Consider an entity set I with a pre-specified partition T={Tl} – which can be set 
according to categories l of a nominal feature – that is to be learnt by producing a 
classification tree. At each step of the tree building process, a subset J⊆ I is to be 
split into a partition S={Sk} in such a way that S is as close as possible to T(J) 
which is the overalp of T and J. The question is: how the similarity between S and 
T(J) is to be measured? When S=T(J), there is no confusion between the two. 
Otherwise, it is the contingency table (see section 2.3) between S and T(J), P=(pkl)  
where pkl is the proportion of J- entities in Sk∩Tl, that expresses the confusion, 
which is why it is frequently referred to as a confusion table in this context.   
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One idea for assessing the extent of similarity is to use a correlation measure 
over the contingency table such as averaged Quetelet coefficients, Q and A, or chi-
squared X2, as discussed in section 2.3.  

 
Seemingly another idea is to score the extent of reduction of uncertainty over 

T(J) obtained when S becomes available. This idea works like this: take a measure 
of uncertainty of a feature, in this case partition T(J), υ(T(J)), and evaluate it at 
each of S-classes, υ(T(Sk)), k=1,…, K. Then the average uncertainty on these 
classes will be , where p

1
( ( ))K

kk
p T Sυ+=∑ k

k

k+ are proportions of entities in classes 

S , so that the reduction of uncertainty is equal to k
 
            

1
( ( ) / ) ( ( )) ( ( ))K

kk
T J S T J p T Sυ υ υ+=

= −∑   (3.16) 

 
Of course a function like (3.16) can be considered a measure of correlation 

over the contingency table P as well, but a nice feature of this approach is that it 
can be extended from nominal features to quantitative ones – just with an uncer-
tainty index over quantitative T-features (see Q.3.11)  

 
Two very popular measures defined according to (3.16) are so-called impurity 

function (Breiman at al. 1984) and information gain (Quinlan 1993).  
 
The impurity function builds on Gini coefficient as a measure of uncertainty 

(see section 1.3). Let us recall that Gini index for partition T is  

where p

2
1

( ) 1 L
ll

G T p
=

= − ∑
l is the proportion of entities in Tl. If J is partitioned in clusters Sk, k=1,…, 

K, partitions T and S form a contingency table of relative frequencies P=(pkl). 
Then the reduction (3.16) of the value of Gini coefficient due to partition S is 
equal to ( ( ), ) ( ( )) ( ( ))kk

T J S G T J p G T SΔ = − k∑ . This index Δ(T(J),S) is referred 

to as impurity of S over partition T. The greater the impurity, the better the split S.  
 
It is not difficult to prove that Δ(l,S) relates to Quetelet indexes from section 

2.2. Indeed, Δ(T,S)= A(T,S) where A(T,S) is the summary absolute Quetelet index 
defined by equation (2.22) in Q.2.24. Indeed, 

where p2( , ) ( ) ( ( ) 1 ( / ),k k l k kl kk l k l
T S G T p G T S p p p pΔ + += − = − − −∑ ∑ ∑ ∑ 2

+

2
l +

+l is 

the proportion of l-th category (class) in set J. This implies indeed that 
2( , ) / ,kl k ll

T S p p pΔ += −∑ ∑  which proves the statement. 

 
The information gain function builds on entropy as a measure of uncertainty 

(see section 1.3). Let us recall that entropy of partition T is 
 where p

1
( ) log( )L

ll
H T p p

=
= −∑ l is the proportion of entities in Tll . If J is parti-

tioned in clusters Sk, k=1,…, K, partitions T and S form a contingency table of 
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relative frequencies P=(pkl). Then the reduction (3.16) of the value of entropy due 
to partition S is equal to ( ( ), ) ( ( )) ( ( ))kk kI T J S H T J p H T S= − ∑ . This index 

I(T(J),S) is referred to as the information gain due to S. In fact, it is equal to a 
popular characteristic of the cross-classification of T and S, the mutual information 
defined as I(T,S)=H(T)+H(S) – H(ST) where H(ST) is entropy of the bivariate dis-
tribution represented by contingency table P. (The J argument is omitted here as 
irrelevant to the statement.) 

Please note that the mutual information is symmetric with regard to S and T, in 
contrast to the impurity function. To prove the statement let us just put forward the 
definition of the information gain and use the property of logarithm that 
log(a/b)=log(a)-log(b): 

 
( , ) ( ) ( ( ) ( ) ( log( / )k k k kl kl kk k l

I T S H T p H T S H T p p p p+ += − = +∑ ∑ ∑ =  

,
( ) log( ) log( ) ( ) ( ) ( ),k k kl klk k l

H T p p p p H T H S H S+ += − + = + −∑ ∑ T

e. 

 

which completes the proof. 
 
The reduction of uncertainty measures are absolute differences that much de-

pend on the measurement scale and, also, on values of υ(T) and υ(S). This is why 
it can be of advantage to use relative versions of the reduction of uncertainty 
measures normalized by υ(T) or υ(S) or both. For example, popular program C4.5 
(Quinlan 1993) uses the information gain normalized by H(S) and referred to as 
the information gain ratio. 

F3.5.2.2 Confusion measures as contributions to the data scatter 

Once again we consider a nominal feature over an entity set I of cardinality N 
(in fact, I and N can be changed for any other symbols – these are just notations in 
this section), represented by partition T={Tl}, and a clustering partition S={Sk} 
designed from available features to approximate T. This time, though, we are not 
going to use their contingency table P=(pkl), to see the co-occurrence frequencies 
pkl emerging from a different perspectiv

 
Specifically, assign each target class (category) Tl with a binary variable xl, a 

dummy, which is just a 1/0 N-dimensional vector whose elements xil =1 if i∈ Tl 
and xil =0, otherwise (l=1,…, L). Use these dummies as quantitative features to 
build a tabular regression of each over the partition S. Consider, first, the average 
of xl within cluster S : the number of unities among xk il with i∈S  is obviously Nk kl, 
the size of the intersection Sk∩Tl because xil =1 only if i∈Sk. That means that the 
within S  average of xk l is equal to ckl=Nkl/N  where N  stands for the size of Sk+ k+ k, 
or, pkl/p in terms of the relative contingency table P.   k+  
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Let us now standardize each feature xl by a scale shift al and rescaling factor 
1/bl,  according to the conventional formula yl =(xl –al)/bl. This will 
correspondingly change the averages, so that within-cluster averages of 
standardized features yl are equal to ckl =(pkl/p  - ak+ l)/bl. In mathematical statistics, 
the issue of standardization is just a routine transforming the probabilistic density 
function to a standardized format. Things are different in data analysis, since no 
density function is assigned to data usually. The scale shift is considered as 
positioning the data against a backdrop of the “norm”, whereas the act of rescaling 
is to balance feature “weights” (see section 4.1 for discussion). Therefore, 
choosing the feature means as the ‘norms” should be reasonable. The mean of 
feature xl is obviously the proportion of unities in it, which is p+l in notations 
related to contingency table P. In fact, the remainder of this section can be 
considered as another reason for using al =p+l.The choice of rescaling factors is 
somewhat less certain, though using all bl =1 should seem reasonable too because 
all the dummies are just 1/0 variables measured in the same scale. Incidentally, 1 
is the range of xl. Some other values related to xl′s dispersion could be used as 
well. With the scale shift value specified, the within cluster average can be 
expressed as  
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Let us refer to formula (2.13) in which the feature scatter is presented as the 
sum of two parts, one explained by partition S and the other unexplained. Using 

 section, the explained part of xsymbolic of this l′s scatter can be expressed as 

1
l k kl

k
B N c= ∑ . This is the sum of contributions of individual clusters. By using 

(3.17) each of the individual contributions is equal to 
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Accordingly, the total contribution of partition S to the 
ized dummies representing partition T is equal to 
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The total contribution (3.19) reminds us of both the averaged relative Quetelet 
coefficient (2.19) and the averaged absolute Quetelet coefficient (2.22). The latter, 
up to the constant N of course, e at all rescaling factors b

( )( / )
K L K L

kv k lp p pB T S B N + +−
= =∑∑ ∑∑  (3.19) 

merges l=1.  The former 
emerges when rescaling factors l lb p= . The square root of the frequency has an 

appropriate meaning – this is a good estimate of the standard deviation in Poisson 
model of the variable: according to this model, N+l unities are thrown randomly 
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into the fragment of memory assigned for the storage of vector xl. In fact, at this 
scaling system, B(T/S)=X2, Pearson chi-squared! 

 
Let us summarize the proven facts. 
 

Statement 3.4.2.1. The impurity function can be equivalently expressed as 
(a) The reduction of Gini uncertainty index of partition T when partition S is 

taken into account; 
( / ) /kl k la l k p p p+ += −(b) The averaged absolute Quetelet index  of the same 

effect; 
(c) The total contribution of partition S to the summary data scatter of the set of 

dummy 1/0 features corresponding to classes of T and standardized by subtracting 
the mean with no rescaling. 

 
Statement 3.4.2.2. The Pearson chi-square function can be equivalently expressed 
as 

(a) A measure of statistical independence between partitions T and S; 
( / ) ( / ) /kl k l lq l k p p p p+ +(b) The averaged relative Quetelet index += −  be-

tween partitions T and S; 
(c) The total contribution of partition S to the summary data scatter of the set of 

dummy 1/0 features xl corresponding to classes Tl and standardized by subtracting 
the mean and dividing the result by l lb p= . 

 
Statement 3.4.2.3. The information gain can be equivalently expressed as 

(a) The reduction of entropy of partition T when partition S is taken into ac-
count; 

(b) The mutual information H(T)+H(S) - H(TS) between T and S; 
 
The claims of equivalence in statements 3.4.2.1 and 3.4.2.2, although having been 
published (see, for example Mirkin 1996) are virtually unknown, probably be-
cause they have been never formulated in the context of classification trees.  

C.3.5.2 Computing scoring functions with MatLab: Computation    

Three functions discussed above, Gini index, Pearson chi-squared, and Infor-
mation gain can be coded as presented in columns of the box below where input p 
is a contingency matrix. Due to a holistic nature of MatLab computation, it is pos-
sible to organize the computation without looping through the matrix elements. 
The subroutines gini, chi and ing in the box can be considered pseudocodes of the 
functions for coding in any other language as well.  
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function a=gini(p) function a=chi(p) function a=ing(p) 
  tot=sum(sum(p)); tot=sum(sum(p));  p=p+1;  

 % total % total % to avoid zeros 
   pr=p/tot;   pr=p/tot;  tot=sum(sum(p)); 
   rp=sum(pr');   rp=sum(pr');   pr=p/tot; 
 % row sums   cp=sum(pr);   rp=sum(pr'); 
   cp=sum(pr);   ir=find(rp>0);   cp=sum(pr);   
 %column sums  % nonzero rows  pl=log2(pr); 
   ps=pr.*pr;    ic=find(cp>0);  pp=pr.*pl; 
   rps=sum(ps');  %nonzero columns  rpp=sum(pp'); 
   ir=find(rp>0); 
 
 
 
 
 
 
 

 
 
Q.3.10. Consider the variance be an uncertainty measure for a quantitative feature 
y. Define the uncertainty reduction measure according to formula (3.16), with T 
changed for y of course, and prove that it is equal to the numerator of the correla-
tion measure – the part of variance of y explained by its tabular regression over S.  
A. The summary contribution of S to the data scatter is equal to 

 where 2 2 2
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(see (2.13) in section 2.2). Then B N 2
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= −∑  where 2σ  is the variance of 

the standardized feature y (note that the mean of y is 0!) and  pk the proportion of 
entities in cluster Sk. The last equation clearly shows that the explained part of v is 

2 2B Nσ η=  . If y has been z-score standardized so that 2 1σ = , B equals the corre-
lation ratio.  
 
Q.3.11. What is the formula of summary contribution B of partition S to the set of 
dummy features representing partition T when they have been normalized by di-
viding by their Bernoullian standard deviations (1 )l l lp+ += −b p ? 
 
Q.3.12.  Consider a partition S={ Sk } (k=1, 2, ..., K) on J and a set of categorical 
features v∈V, each with a set of categories L(v). The category utility function 
(Fisher 1987) scores partition S against the feature set according to formula: 

 

  tr=rps(ir)./rp(ir) 
  ps=pr.*pr;   a1=sum(rpp.*rp); 
  ip=rp'*cp;  tp=cp.*log2(cp);   

  a1=sum(tr);   psi=ps(ir,ic);  a2=sum(tp); 
  a2=sum(cp.*cp);   ipi=ip(ir,ic);  a=a1-a2; 
  a=a1-a2;   tp= psi./ipi;   return 
  return   a1=sum(sum(tp));  
   a=a1-1; 

  return 
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The term in the square brackets is the increase in the expected number of attribute 
values that can be predicted given a class, Sk, over the expected number of attrib-
ute values that could be predicted without using the class. The assumed prediction 
strategy follows a probability-matching approach. According to this approach,  en-
tities arrive one-by-one in a random order, and the category l is predicted for them 
with the frequency reflecting its probability, P(l/k) if the class Sk is known, or pk = 
Nk /N if information of the class Sk is not provided. Factors pk weigh classes Sk ac-
cording to their sizes, and the division by K takes into account the differences in 
the numbers of clusters: the smaller the better. Prove that the category utility func-
tion u(S) is the sum of impurity functions Δ(l,S) over all features l∈L related to the 
number of clusters, that is, u(S)= ( , ) / .

l L
l S KΔ

∈∑  

3.5.3 Building classification trees 

Building of a classification tree is a recursive process: starting from the entire 
data set, partition a cluster into a number of parts according to one of the features. 
To make the partitions less arbitrary, only binary splits are involved in most of the 
update programs. That means that any node may be split only in two parts: (i) that 
corresponding to a category and the rest, for a categorical feature, or (ii) given a 
threshold a, those “less than or equal to a” and those “greater than a”, for a quanti-
tative feature. This approach naturally comes when the data are preprocessed by 
“enveloping” categories into the corresponding “quantitative” dummy features, 
that assign a unity to every object falling into the category, and a zero to all the 
rest. Indeed, at a=0, such a dummy feature would split the set in two parts – that 
for the corresponding category and the rest. Given a cluster, the choice of feature 
and threshold a for doing the split is driven by a correlation scoring function, be it 
Information gain, Pearson chi-squared, Gini index or anything else.  

 
A cluster is not to be split anymore if it is smaller than a user defined threshold 

TS (TS=10 is set further on) or is homogeneous enough. We use two different 
homogeneity tests: (a) large enough proportion of a target category in the cluster, 
say, above 80%, and (b) small enough value of the scoring function which is set to 
be 0.03 for Gini index, 0.08 for Pearson chi-squared, and 0.15 for Information 
gain. These levels of magnitude reflect the functions’ ranges: Gini index is very 
close to 0 hardly reaching 0.5 at all, Pearson chi-squared, related to N, changes be-
tween 0 and 1 because it cannot be greater than the number of split parts minus 1, 
and Information gain can have larger values when the number of target categories 
is 3 or more.  This sets the stopping conditions. 
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Worked example 3.3. Classification tree for Iris dataset. 
 
At Iris dataset with its three taxa, Iris setosa and Iris versicolor and Iris virginica, taken as 
target categories, all the three scoring functions – Impurity (Gini) function, Pearson chi-
squared and Information gain – lead to the same classification tree, presented on Fig. 3.11. 
The tree was found with program clatree.m. It comprises three leaf clusters: A, consisting 
of all all 50 Iris setosa specimens; B, containing 54 entities of which 49 are of Iris versi-
color and 5 of Iris virginica; C,  containing 46 entities of which 45 are of Iris virginica and 
1 of Iris versicolor. Altogether, this misplaces 6 entities leading to the accuracy of 96%. Of 
course, the accuracy would somewhat diminish if a cross-classification scheme is applied 
(see Loh and Shih, 1997, who draw a slightly different tree for Iris dataset). 

 
 
 
 
 
 
                                                                                              
 
                                                                                                     

Ve Vir

S

Petal width:            
                                        >0.6                ≤0.6 
                                                            
                                                                          
P
 

etal width:    
                           ≤1.7               >1.7 

                                              

 
Figure 3.11. Classification tree for the three-taxa partition at Iris dataset found by using 

Gini, Pearson chi-squared and Information gain scoring functions. 
 
Table 3.13. Values of Gini index at the best split of each feature on Iris dataset clusters in 
Figure 3.11. 
 

          First split       Second split 
Feature Value               Gini Value               Gini 
w1 5.4                   0.228 6.1                  0.107 
w2 3.3                   0.127 2.4                  0.036 
w3 1.9                   0.333 4.7                  0.374 
w4 0.6                   0.333 1.7                  0.390 

 
Let us take a look at the action of each variable at each of the two splits in Table 3.13. Each 
time features w3 and w4 appear to be most contributing, so that at the first split, at which 
w3 and w4 give the same impurity value, w4 made it through just because it is the last 
maximum which is remembered by the program. 
 
The tree involves just one feature, w4: Petal width, split twice, first at 0.6 value and then at 
1.7 value. The Pearson chi-squared value (related to N of course) is 1 at the first split and 
0.78 at the second. The Impurity function grows by 0.33 at the first split and 0.39 at the 
second. The fact that the second value is greater than the first one may seem to be some-
what controversial. Indeed, the first split is supposed to be the best, so that it is the first 
value that ought to be maximum. Nevertheless, this opinion is wrong: if the first split was at 
w4=1.7 that would generate just 0.28 of impurity value, less than the optimal 0.33 at 
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w4=0.6. Why? Because the first taxon has not been extracted yet and grossly contributes to 
a higher confusion (see the top part in Table.3.14). 
 
Table 3.14. Confusion tables between a split and target partition on Iris dataset. 
                

Target partition classes Iris setosa Iris versi-
color 

Iris vir-
ginica 

Total  
 Full set                           

w4≤1.7 
    
50 49 5  104 
0 1 45 w4>1.7          46 

Total 50 50 50 150 
First cluster removed     
w4≤1.7 

     
0 49 5  54 
0 1 45  46 w4>1.7 

Total 0 50 50 100 

Project 3.1. Prediction of learning outcome at Student data 

Consider the Student dataset and ask whether students’ learning successes can be predicted 
from other features available (Occupation, Age, Number of children)? By looking at Table 
0.5, it is hardly can be expected that marks can be predicted in this way. Therefore, let us 
divide students in three groups: I – not so good performers (average mark is less than 50), II 
– good performers (average mark between 50 and 70 inclusive), and III – excellent per-
formers (average mark higher than 70). To do this, we compute the average mark over the 
three subjects (SE, OOP, and CI) and create a partition of students T as described; the dis-
tribution of T appears to be I-25, II-58, III-17. 
 
We have a 100×5 matrix X to explore the correlation between X and T, the three columns, 
1,2,3, being dummy variables for Occupation categories (IT, BA, AN), column 4 for Age, 
and column 5 for  Number of children. The two conventional stopping criteria, the cluster’s 
size and prevalence of a target class, are not sufficient at this data, because after one or two 
splits, the program just chips away small fragments of clusters without much improving 
them. This corresponds to the situations at which the scoring function does not show much 
improvements either. Therefore, we utilize one more criterion – the minimum value of the 
scoring function below which there is no splitting. Since the three scoring functions we use 
have different ranges, the thresholds must be different too. At this study, the threshold is set 
at 0.03 for Gini index, 0.08 for Pearson chi-squared, and 0.15 for Information gain. The 
minimum cluster size is taken at 10, and the prevalence of a target class at 80%. 
 
The classification tree found with Gini index is presented on Figure 3.12. The distributions 
of target categories in clusters on Figure 3.12 are presented in Table 3.15. Bold font high-
lights four terminal clusters as well as high or low proportions of target classes in clusters. 
High proportions here are those greater than 70% and low proportions are those smaller 
than 5%. 
  
Tree on Figure 3.12 is driven by two features: AN Occupation, that structures the set rather 
well – one split part, those of AN occupation, get more than 70% of category I, and none of 
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category III, and the other of category II. All further divisions are over feature Age; the 12 
students in cluster 8 are rather specific – these are of AN occupation aged between 22 and 
 

1: AN 

6: 13 

2: Age 

7: 18 

3: Age 

4: 44 5: 25 

8: 12 

                  No                                     Yes 
 

 
≤35                           >35                   ≤28                        >28  

 
 
                                         >21           

 
                    
Figure 3.12. Classification tree on students data targeting partition T of students in three 
categories found using Gini index. The legend Number: A presents, at a split cluster, A as 
the split variable or, at an unsplit cluster, A  as the size (the number of students in it).     
 
 
Table 3.15. Distributions of target classes in clusters of tree on Figure 3.12, per cent 
 

Target categories           Clusters in tree on Figure 3.12 
  1          2          3          4         5        6         7         8         
25.0      2.9     74.2      2.3     4.0     69.2    77.8    75.0 I 
58.0     72.5    25.8    61.4    92.0    30.8    22.2    25.0 II 
17.0     24.6      0       36.4      4.0        0        0         0 III 

Gini index at split 0.168  0.046  0.035                         0.048 
Cluster size 100        69       31       44       25       13       18       12 

 
28 leading to 75% of them in category I, an improvement over parental cluster 6. Cluster 4 
of younger not-AN students seems an attempt at drawing a cluster to predict category III – 
it has a highest jump in its proportion, to 36.4% from 17% in the entire set (cluster 1). The 
25 older people among not-AN students are overwhelmingly, 92%, in category II. More 
splits would have followed if we had decreased the minimum acceptable value of Gini in-
dex, say from 0.03 to 0.01. 
 
How well this tree would fare at prediction? To address this question properly, one should 
either conduct a cross-classification test as explained in section 3.5.1 or set aside a random 
testing set before using the rest for building a tree, after which see the levels of errors on the 
testing set.  
 
Yet for the illustrative purposes, let us calculate the prediction error by using tree on Figure 
3.12. This is done by using the terminal clusters 4, 5, 7, 8 comprising 44, 25, 18, 12 ele-
ments, respectively. They total to 99, not 100, because of chipping off an element from 
cluster 6 to make it into cluster 7. That means: for students in AN category aged 21 or less, 
no prediction of their learning success level will be made; the classifier takes what is re-
ferred to as reject option (comprising approximately 1% of future cases if our sample is rep-
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resentative). According to the data in Table 3.15, the optimal prediction rule would predict 
then category II at cluster Cluster 4 (with error 100 – 61.4 = 38.6%), category II at cluster 5 
(with error 100 – 92 = 8%), and category I at clusters 7 and 8 (with errors 22.2% and 
25.0%, respectively). The average error is the sum of the individual cluster errors weighted 
by their relative sizes, (38.6*44+8*25+22.2*18+25*12)/99 = 26.2%. 
 
What happens, if we use the parental cluster 6 instead of the chipped cluster 8? First thing – 
no reject option is involved then. Second, the error somewhat increases as should be ex-
pected:  (38.6*44 + 8*25 + 22.2*18 + 30.8*13)/100= 27.0 %. 
  

1: AN 

2:  69 3:  31 

1: AN  
  
 
 
 
 
 
 
                                                (a)                                                         (b) 

2: Age 3: 31 

 
Figure 3.13. Classification trees on Student dataset targeting partition T of students in three 
categories found using Pearson chi-squared (a) and Information gain (b). The legends are of 
format Number: A where A, at a split cluster, is the split variable or, at an unsplit cluster, 
the cluster’s size.  
 
Figure 3.13 presents trees found by using Pearson chi-squared (a) and Information gain (b). 
In contrast to Gini index, decreasing the increment threshold does not much help at Infor-
mation gain: chipping here and there rather than splits will be added. The change of split-
ting Age value to 30 at cluster 2 on tree (a) does lead to some improvements: the 45 older 
students are 82.2% in category II. Yet among the 24 younger students, 45.8% belong to 
category III (leaving 54.2% in category II and 0 in category I).  
 
With this example, one can see that the 90-100% precision is not easy to achieve. That is, a 
terminal node may have rather modest proportions of target categories, like cluster 5 on 
Figure 3.13 (a): about 54% of II category and 46% of III category. Conventional thinking 
would label the node as an II category predictor because the share of II is greater than half. 
Yet, one should note that, in fact, the proportion 54% is smaller than that, 58%, in the entire 
set, which means that in fact these conditions, Not_AN and younger age, less than 31, wash 
out some of II category. It is a case when the style of Quetelet’s thinking may produce a 
better description. This thinking goes beyond proportions in the terminal node and requires 
comparing the category shares at the node with that in the whole sample. In contrast to a 
reduction of II category, this cluster boasts a dramatic increase of III category – from 17% 
in the entire set to 46% in the cluster, 29%. This difference would be picked up by the abso-
lute Quetelet coefficient which is equal to Gini index. Even more dramatic is the relative 
increase, (45.8-17)/17=170%. It is this increase that has been picked up by Pearson chi-
squared scoring function, because it is driven by the relative Quetelet coefficient.  

 
Q.3.13. Drawing a lift chart in marketing research. Consider a marketing cam-
paign advertising a product. There is a 1000 strong sample from the set of targeted 
customers whose purchasing behavior is known because of prior campaigns. The 

4: 24 5: 45 
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sample is composed of clusters of a classification tree with different response (that 
is, purchasing) rates (see Table 3.16). To plan an effective campaign, marketing 
researchers use what is called a lift chart – a visual representation of the response 
rate. 

 
Table 3.16. Proportions of four clusters in a sample of 1000 customers and 

their purchasing behavior (response rate) 
 

Cluster 
share, % 

10           40             25             25 

Response 
rate, %  

30           10               4              0 

 
The x-axis of a lift chart shows the percentiles of the sample, say, from 10% to 

100%. On y-axis, the so-called lifts are presented. Given a group of customers, the 
lift is defined as the ratio of the group’s response rate to the baseline response rate, 
which is the response rate for the entire sample. On the lift chart, the percentiles of 
the sample are taken in the descending order of the lift. Both baseline and percen-
tile lifts are presented on the chart. Build a lift chart for the sample. A. First, we 
calculate the baseline rate which is the average of the response  rates in Table 3.16 
weighted by the cluster proportions: r=0.1*30+0.4*10+0.25*4+0.25*0=8%. Now 
we take the most responsive 10% of the customers and calculate their lift value: 
30/8=3.75. Next, we take the most responsive 20% of  
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Figure 3.14. Lift chart for data in Table 3.16. 
 

the sample, that is the first cluster plus a hundred customers from the second clus-
ter and see their response rate – there should be 30 customers from the first cluster 
plus 10 from the second who have purchased the product, which gives 
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40/200=20% response rate leading to the lift value of 20/8=2.5. Next percentile, 
30% of the sample is composed of the first cluster plus 200 customers from the 
second cluster leading to 50/300=17.7% response rate and lift 2.2. In this way, 
chart presented on Figure 3.14 is computed.  

C. 3.5.3 Building classification trees: Computation 

Consider an entity set I along with a nominal target feature represented by 
partition T of I as well as a set of quantitative input features X (some or all of X-
features may be binary dummy variables corresponding to categories). At each 
step of the process of building a classification tree a cluster J⊆I is to be split 
according to a feature xv from X in two clusters, S1 and S2 so that S1 ={i|i∈J and xiv 
≤y} and S2 ={i|i∈J and xiv >y} where y is a value of xv. The choice of xv and y is 
guided by a scoring function W(S,T) defined over the contingency table P cross-
classifying T by S. That implies that a cluster, as an element of the hierarchical 
structure being built, should maintain at least the following data: (i) its entity set, 
(ii) its parental cluster, (iii) feature xv over which it has been split, (iv) splitting 
value y, (v) the inequality, ≤ or >, in the cluster defining predicate. The process 
starts at the universal cluster consisting of the entire set I. The process stops if 
either of two conditions holds: (a) |J|<n, where n is a pre-specified threshold on 
the minimum number of entities in a cluster, and (b) if the frequency of a T-cluster 
is greater than a pre-specified threshold α. To make testing of (b) easier, each 
cluster should bear one more feature – (vi) the distribution of T in it. One more 
useful piece of data supplied with a cluster would be (vii) a signal of whether it 
may or may not be split again. 

 
The recursive nature of the process, as well as the presence of a set of data to 

accompany each cluster, would make it a fitting subject of an object oriented code. 
Yet since the object oriented part of MatLab is not quite native in it, a procedural 
construction will be described in this section. This construction involves two parts, 
provided that computing scoring function W(T,S) over contingency table P,has 
been implemented:  (A) finding the best split over a feature, and (B) building a hi-
erarchy of the best splits. 

C.3.5.1 Finding the best split over a feature: Computation 

A pseudocode, or MatLab, function, msplit.m, takes in a column-feature x, par-
tition of the set of its indices, t, as a cell array of t-classes, and a string with the 
name of a scoring method. It produces partition s, the feature splitting value y, and 
the value of scoring function ma. The stages of computation are annotated within 
the code. 
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function [g,ma,y]=msplit(x,t,method) 
  
n=length(x); 
%-------preparing the set of split value candidates 
xv=union(x,x);%set of x values sorted 
ll=length(xv); 
rl=length(t); 
if ll==1 %feature x is constant 
    g{1}=[1:n]; 
    ma=0; 
    y=max(x); 
else 
    for k=1:(ll-1) %loop over splitting values 
        f{1}=find(x<=xv(k)); %first split set 
        f{2}=setdiff([1:n],f{1}); % the rest 
        for ik=1:2; for il=1:rl 
              p(ik,il)=length(intersect(f{ik},t{il})); 
            end 
        end %  contingency table p 
        switch method 
            case 'gini' 
                res=gini(p); 
            case 'chi' 
                res=chi(p); 
            case 'ing' 
                res=ing(p); 
            otherwise 
                disp('The method is wrong '); 
                pause(10); 
        end 
    %----------looking for the best split  
        if res>ma 
            ma=res; 
            g=f; 
            y=xv(k); 
        end 
    end 
end 

C3.5.2 Organizing a recursive split computation and storage 

The computation is organized in code clatree.m printed in the appendix. Here 
are just a few comments on its structure. Consider a set of ss clusters stored in a 
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cell structure indexed from 1 to ss; in the beginning, the structure stores just the 
universal cluster I and its features at ss=1. Of these clusters, those in the end, start-
ing from index tt≥ss are eligible for splitting. The newly split clusters are indexed 
by index bb starting from bb=ss+1. (Note that with this system of indexing, there 
is no need to assign clusters with a label informing that they should not be split 
anymore: the clusters to split can only be fresh ones!) After split parts are put in 
the structure, the indices are updated.  

 
There can be a number of stopping criteria that are to be set in the very begin-

ning of the program: it stops when no clusters eligible for splitting remain. In the 
current version of program clatree.m, three types of stopping criteria are em-
ployed. First is the number of entities, TS: a cluster with a smaller number of enti-
ties cannot make it into the tree and of course cannot be split further. Second, the 
dominant proportion of the target classes, ee: a cluster is not split anymore if this 
has been reached. And the third stopping criterion is tin, a threshold on the scoring 
function value: if it is less then tin at a split, the cluster is not split.  

3.6 Learning correlation with neuron networks 

3.6.1 General 

P3.6.1 Artificial neuron and neuron network: Presentation 

Neuron network is one of the most popular structures used for predictions of 
target features. It is a network of artificial neurons modeling the neuron cell in a 
living organism. A neuron cell fires an output when its summary input becomes 
higher than a threshold. Dendrites bring signal in, axons pass it out, and the firing 
occurs via synapse, a gap between neurons, that makes the threshold (see Figure 
3.15). 

 
This is modeled in an artificial neuron as follows (see Figure 3.16). A neuron 

model is drawn as a set of input elements connected to an output. The connections 
are assigned with wiring weights. 
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Figure 3.15.  Scheme of a neuron cell. 
 
The input signals are data features or other neurons’ outputs. The output ele-

ment receives a combined signal, the sum of feature values weighted by the wiring 
weights. The output compares this with a firing threshold, otherwise referred to a 
bias, and fires an output depending on the results. Ideally, the output is 1 if the 
combined signal is greater than the threshold, and -1 if it is smaller. This is, in 
fact, what is called the sign function of the difference, sign(x), which is 1, 0 or -1 
if x is positive, zero or negative, respectively. This activation function is overly 
straightforward sometimes. Instead, the so-called sigmoid and symmetric sigmoid 
functions are considered as smooth exponent-based counterparts to sign(x). Their 
graphs are shown alongside with that for sign(x) on Figure 3.17.  Sometimes the 
output element is assumed as doing no transformation at all, just passing the com-
bined signal as the neuron’s output, which is referred to as a linear activation func-
tion. 

 
 
 
 
 
 
 
 
 

   w1    w2                                 wp 
 
     x1          x2                                     xp 

w0 

    w1    w2                wp       w0 
 
 x1     x2                                   xp    x0=1 

Figure 3.16. A scheme of an artificial neuron, on the left. The same neuron 
with the firing threshold shown as a wiring weight on the fictitious input always 
equal to 1 is on the right.    

 
The firing threshold, or bias, hidden in the box in neuron on the left on Figure 
3.16, can be made explicit if one more, fictitious, input is added to the neuron.  
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Figure 3.17. Graphs of sign (a), sigmoid (b) and symmetric sigmoid (c) func-

tions. 

      (a)                  (b)                     (c)

 
This input is always equal to 1 so that its wiring weight is always added to the 
combined input to the neuron. It is assumed to be equal to minus the bias so that 
the total sum is the difference between the combined signal and the bias. In the 
remainder, we assume that the bias, with the minus sign, is always explicitly pre-
sent among the wiring weights in this way (see Figure 3.16 on the right). 

 
Artificial neurons can be variously combined in neural networks. There have 

been defined many specific types of neuron network structures, referred to as ar-
chitectures, of which the most generic is a three-layer structure with no feedback 
connections, such as presented on Figure 3.18 in the next section.  There are two 
outbound layers, the input and output ones, and one intermediate layer which is re-
ferred to as a hidden layer. This is why such a structure is referred to as a one hid-
den-layer neuron network (NN). 

 
Network on Figure 3.18 is designed as a one-hidden-layer NN for predicting 

petal sizes of Iris features from their sepal sizes. Recall that in Iris data set, each of 
150 specimens is presented with four features which are the length and width of 
petals (features w3 and w4) and sepals (features w1 and w2). It is likely that the 
sepal sizes and petal sizes are related.  

 
In fact, the further material can be used for building an NN for modeling correla-
tion between any inputs and outputs – the only possible difference, in numbers of 
input and/or output units, plays no role in the organization of computations. 

 
This neural network consists of the following layers:  

(a) Input layer that accepts three inputs: a bias input x0=1 as explained 
above (see Figure 3.16 on the right) as well as sepal length and width; 
these are combined to be inputs to each of the neurons at the hidden 
layer. 

(b) Output layer producing an estimate for petal length and width with a 
linear activation function. Its input is the output signals from the 
hidden layer. No fictitious input x0=1 is assumed here because the 
activation function here just passes the combined signal through 
without a threshold.  

(c) Hidden layer consisting of three neurons. Each of them takes a com-
bined input from the first layer and applies to it its sigmoid activation 
function. The output signals of these three neurons constitute inputs to 
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the output layer. The architecture allows for any number of hidden 
neurons with no changes in the computations. 

 
The one-hidden-layer structure is generic in NN theory. It has been proven, for in-
stance, that such a structure can exactly learn any subset of the set of entities. 
Moreover, any pre-specified  mapping of inputs to outputs can be approximated 
up to a pre-specified precision with such a one-hidden-layer network, if the num-
ber of hidden neurons is large enough (Tsybenko 1989). 

F3.6.1 Activation functions and network function: Formulation 

Two popular activation functions, besides the sign function ůi =sign(ûi), are the 
linear activation function, ůi = ûi and sigmoid activation function ůi =s(ûi) where         

 
s(x) =  (1+ e-x)-1    (3.16) 

 
is a smooth analogue to the sign function, except for the fact that its output is be-
tween 0 and 1 rather than -1 and 1 (see Figure 3.17 (b)). To imitate the perceptron 
with its sign(x) output, between -1 and 1, we first double the output interval and 
then subtract 1 to obtain what is referred to as a symmetric sigmoid or hyperbolic 
tangent: 

 
th(x) =2s(x)-1=  2(1+ e-x)-1  - 1   (3.16’) 

 
This function, illustrated on Figure 3.17 (c), in contrast to sigmoid s(x), is sym-
metric: th(-x) = - th(x), like sign(x), which can be useful in some contexts.  

 
The sigmoid activation functions have nice mathematical properties; they are 

not only smooth, but their derivatives can be expressed through the functions 
themselves, see Q.3.14 and (3.24).  

 
Let us express now the function of the one-hidden-layer neural network 

presented on Figure 3.18. Its wiring weights between the input and hidden layer 
form a matrix W=(wih), where i denotes an input, and h a hidden neuron, h=1,2,..., 
H where H is the number of hidden neurons. The wiring weights between the 
hidden and output layers form matrix V=(vhk), where h denotes a hidden neuron 
and k an output. 

 
Layers I and III are assumed to be linear giving no transformation to their in-

puts; all of the hidden layer neurons will be assumed to have a symmetric sigmoid 
as their activation function. 

 



 183 

                              û1                                û2

 
  k                                                                                                        Output  (linear) 

 

 
                   v11                    v12       
                                             v21  v22            v31     v32

        s.l. x1         s.w. x2                  fict.x0 = 1                        Input  (linear)  

III1 III2 

 II1  II2  II3 

 I1  I2 I3  

h                                                                                                          Hidden (sig
             
                          w21                    w22                 w23 
             

moid)                 

w31                w32    w33 

 i 

 
 w11   w12      w13              
 
 

 
 
 
 
Figure 3.18. A feed-forward network with two input and two output features 

(no feedback loops). Layers: Input (I, indexed by i), Output (III, indexed by k) and 
Hidden (II, indexed by h). 

 
To find out an analytic expression for the network, let us work it out layer by 

layer. Neuron h in the hidden layer receives, as its input, a combined signal of 
 

zh =w1h x1 + w2hx2+w  x0h 0  
 

which is h-th component of vector z = ∑i xi∗wih = x∗W where x is a 1x3 input 
vector. Then its output will be th(zh). These constitute an output vector 
th(z)=th(x∗W) that is input to the output layer. Its k-th node receives a combined 
signal ∑ j vjk∗th(zj) which is k-th component of the matrix product th(z) ∗V, that is 
passed as the NN output û. Therefore, the NN on Figure 3.18 transforms input x 
into output û according to the following formula   

 
û = th(x∗W) ∗V    (3.18) 

 
which combines linear operations of matrix multiplication with a nonlinear sym-
metric sigmoid transformation. If matrices W, V are known, (3.18) computes the 
function u=F(x) in terms of th, W, and V.The problem is to fit this model with 
training data provided, at this instance, by the Iris data set. 
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3.6.2 Learning a multi-layer network 

Given all the wiring weights W, between the input and hidden layers, and wiring 
weights V, between the hidden and output layers, as well as pre-specified hidden 
layer activation functions, the NN on Figure 3.18 takes an input of the sepal length 
and width and transforms it into estimates of the corresponding petal length and 
width.  

 
The quality of the estimates can be measured by the average squared error. The 

better adapted weights W and V are, the smaller the error. Where the weights come 
from? They are learnt from the training data. 

 
Thus the problem is to estimate weight matrices W and V at the training data in 

such a way that the average squared error is minimized. 
 
The machine learning paradigm is based on the assumption that a learning de-

vice adapts itself incrementally by facing entities one by one. This means that the 
full sample is assumed to be never known to the device so that global solutions, 
such as the orthogonal projection used in linear discrimination, are not applicable. 
In such a situation an optimization algorithm that processes entities one by one 
should be applied. Such is the gradient method, also referred to as the steepest de-
scent.  

 
This method relies on the so-called gradient of the function to be optimized. 

The gradient is a vector that can be derived or estimated at any admissible solu-
tion, that is, matrices W and V. This vector shows the direction of the steepest as-
cent over the optimized function considered as a surface. Its elements are the so-
called partial derivatives of the optimized function that can be derived according 
to rules of calculus. The gradient is useful for maximizing a criterion, but how one 
can do minimization with the steepest ascent? Easily, by moving in the opposite 
direction, that is, minus gradient.  

 
Assume, we have some estimates of matrices W and V as well as their gradi-

ents, that is, matrices gW and gV, whose components express the steepest ascent 
direction of changes in W and V. Then, according to the method of steepest de-
scent, the matrices V and W should be moved in the direction of –gW and –gV 
with the control of the length of the step by a factor referred to as the learning rate. 
The equations expressing the move from the old state to the new one are as fol-
lows: 

  
V(new)=V(old) –μ∗gV,  W(new)=W(old) –μ∗gW    (3.19) 
 

where μ is the learning rate (step size). The importance of properly choosing the 
step size is illustrated on Figure 3.19. 
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  old          new                        
                                               W 

 
 

Figure 3.19. The importance of properly choosing the step in the direction of the 
steepest descent: too big a leap, and the new state is hardly better than the old one.   

 
The gradient of the criterion of squared error is defined by: (a) matrices W and 

V, (b) error value itself, and (c) input feature values. This is why it is convenient to 
apply this approach when entities come in a sequence so that each individual en-
tity gives an estimate of the gradient and, accordingly, the move to a new state of 
matrices W and V according to equations (3.19). The sequence of entities is natural 
when the learning is done on the fly by processing entities in the order of their ar-
rival. In the situations when all the entities have been already collected in a data 
set, as the Iris data set, the sequence is organized artificially in a random order. 
Moreover, as the number of entities is typically rather small (as it is in the case of 
just 150 Iris specimens) and the gradient process is rather slow, it is usually not 
enough to process all the entities just once.  The processing of all the entities in a 
random order constitutes an epoch. A number of epochs need to be executed until 
the matrices V and W are stabilized. 

 
Worked example 3.4. Learning Iris petal sizes 
 
Consider, at any Iris specimen, its two sepal sizes as the input and its two petal sizes as 

the output. We are going to find a decision rule relating them in the format of a one-hidden-
layer NN.  

 
Table 3.17. Relative error values in the predicted petal dimensions with full Iris data af-

ter 5,000 epochs. 
 

Relative error, per cent Number of hidden 
neurons 

 
 Petal length Petal width 
 

3 5.36 8.84  
6 4.99 8.40  
10 4.98 8.15  
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At the Iris data, the architecture presented on Figure 3.18 and program nnn.m imple-
menting the error back propagation algorithm leads to the average errors at each of the out-
put variables presented in Table 3.17 at different numbers of hidden neurons h. Note that 
the errors are given relative to feature ranges. 

 
The number of elements in matrices V and W here are five-fold of the number of hidden 

neurons, thus ranging from 15 at the current setting of three hidden neurons to 50 when this 
grows to 10. One can see that the increase in the numbers of hidden neurons does bring 
some improvement, but not that great – probably not worth doing. 

Here are a few suggestions for further work on this example: 
   1.  Find values of E  for the errors reported in Table above. 
   2.  Take a look at what happens if the data are not normalized. 

3. Take a look at what happens if the learning rate is increased, or de-
creased, ten times. 

4.  Extend the table above for different numbers of hidden neurons. 
5. Try petal sizes as input with sepal sizes as output. 
6. Try predicting only one size over all input variables. 

 
Worked example 3.5. Predicting marks at Student dataset 
 
Let us embark on an ambitious task of predicting students mark at the Students data – 

we partially dealt with this in section 3.4. The nnn.m program leads to the average errors in 
predicting student marks over three subjects, as presented Table 3.18 at different numbers 
of hidden neurons h. Surprisingly, the prediction works rather well: the errors are on the 
level of 3 points only, more or less independently on the number of hidden neurons utilized. 

 
Table 3.18. Average absolute error values in the predicted student marks over all three 

subjects, with full Student data after 5,000 epochs. 
 

H |e1| |e2| |e3| # param. 

3 2.65 3.16 3.17 27 
6 2.29 3.03 2.75 54 
10 2.17 3.00 2.64 90 

 

F3.6.2 Fitting neuron networks and gradient optimization: 
Formulation 

F3.6.2.1 Steepest descent for the square error criterion with linear rules 
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In machine learning, the assumption is that the decision rule is learnt incremen-
tally by using entities one by one. That is, the global solutions involving the entire 
sample are not applicable. In such a situation an optimization algorithm that proc-
esses entities one by one should be applied. The most popular is the gradient 
method, also referred to as the steepest descent.  

 
This method relies on the gradient of the function to be optimized. If we are to 

minimize function f(x) over x spanning a subspace D of the n-dimensional vector 
space Rn, we can utilize its gradient gf for this purpose. The gradient gf at x∈D is a 
vector consisting of the f’s partial derivatives over all components of x, under the 
assumption that a full derivative, geometrically corresponding to the tangential 
hyperplane, does exist. This vector shows the direction of the steepest ascent of 
f(x), so that its opposite vector –gf shows the opposite direction which is 
considered as that of the steepest descent of f(x). The method of steepest descent 
produces a sequence of points x(0), x(1), x(2), … starting from an arbitrary x(0) by 
using recursive equation  

 
X(t+1)=x(t) –μt∗gf(x(t))   (3.19) 

 
where parameter μt denotes the length of the step to go from x(t) in the direction 
of the steepest descent, referred to as the learning rate in machine learning. The 
sequence x(t) is guaranteed to converge to the minimum point at a constant μt = μ 

if f(x) is strictly convex, so that there is a sphere of a finite radius such that f(x) is 
always greater than its lower part, as shown on the right of Figure 3.20 (see B. 
Polyak 1987).  

 
 
 
     
 
 
Figure 3.20. A convex function, on the left and strictly convex function, on the 

right. 
 
The process always converges for f(x) being a convex function if μt converges to 0 
when t grows to infinity, but not too fast so that the sum of the series Σtμt is 
infinity. This guarantees that the moves from x(t) to x(t+1) are small enough to not 
over-jump the point of minimum but not that small to stop the sequence short of 
reaching the optimum by themselves.  

 
 
 
 
 

    x1                  x2                           x3                   x4            x 
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Figure 3.21. Points x1 to x4 are points of local minimum for the function 

whose graph is drawn with the line. The global minimum is only one of them, x4. 
 
In many cases, however, the only guarantee is that the sequence reaches a local 

optimum depending on the starting point x(0) (see Figure 3.21). Luckily, the 
square error in the problem of linear discriminant analysis is strictly convex so 
that the steepest descent sequence converges to the optimum from any initial 
point. This gives rise to the following algorithm. 

F3.6.2.2 Learning wiring weights with error back propagation 

The problem of learning a neural network is to find weight matrices W and V 
minimizing the squared difference between u observed and û computed according 
to (3.20):   

 
    E=d(u,û) = <u - th(x*W)*V, u - th(x*W)*V >/2,    (3.20) 
 

over the training entity set. The division by 2 is made to avoid factor 2 in the de-
rivatives of E that has been already encountered in section 3.6.1.  

  
Specifically, with just two outputs on Figure 3.18, the error function is 
 
 E = [(u1 – û1)2  +  (u2 – û2)2 ]/2     (3.20’) 
 

where e1 = u1 – û1 and  e2 = u2 – û2  are differences between the actual and 
predicted values of the two outputs.  

 
Steepest descent equations (3.19) for learning V and W can be written compo-

nent-wise: 
 

vhk(t+1)=vhk(t) - μ∗∂E/∂vhk, wih(t+1)=wih(t) - μ∗∂E/∂wih (i∈I, h∈II, k∈III)  (3.21) 
 
To make these computable, let us express the derivatives explicitly; first those at 
the output, over vhk:  

 
∂E/∂vhk = - (uk – ûk) ∗∂ûk /∂vhk.       
   
To advance, notice that ∂ûk /∂vhk=th(zh), since  ûk = ∑j th(zh) ∗vhk. Putting 

this into equation above makes 
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∂E/∂vhk = - (uk – ûk) ∗th(zh).     (3.22) 
 
Regarding the second layer, of W, let us find the derivative ∂E/∂wih which re-

quires more chain based derivations. Specifically, 
 
∂E/∂wij = ∑k[-(uk – ûk) ∗∂ûk /∂wij]. 
Since ûk = ∑j th(∑i xi∗wij) ∗vjk, this can be expressed as 
 
∂ûk /∂wij = vjk∗ th′(∑i xi∗wij) ∗xi. 
 
The derivative th′(z) can be expressed through th(z) as explained  in Q.3.14 

later, which leads to the following final expression for the partial derivatives: 
 
∂E/∂wij=-∑k[(uk – ûk) ∗ vjk]∗(1+th(zj))(1-th(zj)) ∗xi/2    (3.23) 
 
Equations (3.19), (3.22) and (3.23) lead to the following rule for processing an 

entity, or instance, in the back-propagation algorithm as applied to neural network 
on Figure 3.18.  

 
1 Forward computation (of the output û and error). Given matrices V 

and W, upon receiving an instance (x,u), the estimate û of vector u is 
computed according to the neural network as formalized in equation 
(3.18), and the error e = u – û is calculated. 

 
2 Error back-propagation (for estimation of the gradient elements). 

Each neuron receives the relevant error estimate, which is           
-ek = -(uk – ûk),  for (3.22) for output neurons k (k=III1, III2) or   
-∑k[(uk – ûk) ∗ vhk], for (3.23) for hidden neurons h (j=II1, II2, 

II3) [the latter can be seen as the sum of errors arriving from the output 
neurons according to the corresponding synapse weights].  
These are used to adjust the derivatives (3.22) and (3.23) by multiplying 
them with local data depending on the input signal, which is th(zh), for 
neuron k’s source h in (3.22), and th′(zh)xi for neuron h’s source i in 
(3.23). 

  
3 Weights update. Matrices V and W are updated according to formula 

(3.19). 
 
What is nice in this procedure is that the computation can be done locally, so 

that every neuron processes only the data that are available to this neuron, first 
from the input layer, then backwards, from the output layer. In particular, the algo-
rithm does not change if the number of hidden neurons is changed from h=3 on 
Figure 3.18, to any other integer h=1, 2, … nor it changes if the number of inputs 
and/or outputs changed.  
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C3.6.2 Error back propagation: Computation 

For a data set available as a whole, “offline”, due to the specifics of the binary 
target variables and activation functions, such as th(x) and sign(x), which have -1 
and 1 as their boundaries, the data in the NN context are frequently pre-processed 
to make every feature’s range to lie between -1 and 1 and the midrange to be 0. 
This can be done by using the conventional shifting and rescaling formula for each 
feature v, yiv=(xiv-av)/bv,  at which bv is equal to the half-range, bv=(Mv-mv)/2, 
and shift coefficient av, to the mid-range, av=(Mv+mv)/2. Here Mv denotes the 
maximum and mv the minimum of feature v.  

 
The practice of digital computation, with a limited number of digits used for 

representation of reals, shows that it is a good idea to further expand the ranges 
into a  [-10,10] interval by multiplying afterwards all the entries by 10: in this 
range, digital numbers stored in computer arguably lead to smaller computation 
errors than in the range [-1,1] if they are closer to 0. 

  
The implementation of the method of gradient descent for learning neural 

networks cannot be straightforward because the minimized squared error depends 
both on the wiring weight matrices V and W and input/output pairs (x,u), yet there 
is no way to freely change the latter – the process is bound by the set of 
observations. This is why the observed pairs (xi,ui), the instances,  are used as 
triggers to the steepest descent changes in matrices V and W. Specifically, given V 
and W, the instances are put one by one, in a random order, to see what are the 
discrepancies between the observed u and computed û. When all of the instances 
have been entered, their order is randomly changed and they are ready to be put all 
over again – this is referred to as a new “epoch”. The matrices V and W are 
changed either at each (xi,ui) instance, using the errors û–u locally,  or after an 
epoch, using the accumulated errors.  

 
The error back propagation algorithm, with the local changes of matrices V and 

W, can be formulated as follows. 
 

A. Initialize weight matrices W=(wih) and V=(vhk) by using random normal 
distribution N(0,1) with the mean at 0 and the variance 1. 

B. Standardize data to [-10,10] ranges and 0 averages as described above.  
C. Formulate halting criterion as explained below and run a loop over ep-

ochs. 
D. Randomize the order of entities within an epoch and run a loop of the er-

ror back-propagation instance processing procedure, below, in that order. 
E.  If Halt-criterion is met, end the computation and output results: W, V, û, 

e, and E. Otherwise, execute D again. 
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The best halting criterion, according to the nature of the steepest descent process 
should be at 

(i) Matrices V and W stabilized. Unfortunately, in real world computa-
tions this criterion requires by far too many iterations, so that in 
practice the matrices fail to converge. Thus, other stopping criteria 
are used. 

(ii) The difference between the average values (over iterations within an 
epoch) of the error function becomes smaller than a pre-specified 
threshold, such as 0.0001. 

(iii) The number of epochs performed reaches a pre-specified threshold 
such as 5,000. 

 
Instance Processing Procedure 
 
Specifics of the NN structure and function provide for simple and effective 

rules for processing individual entities in the procedure of the steepest descent. 
Before updating the wiring weights according to equations (3.19), two following 
steps are executed: 

 
1.  Forward computation of the estimated output and its error. Upon re-
ceiving a training instance input feature values, they are processed by the neu-
ron network to produce an estimate of the output, after which the error is 
computed as the difference between real and estimated output values. 
 
2. Error back-propagation for estimation of the gradient. The computed 
error of the output is back-propagated through the network. Each neuron of 
the output layer corresponds to a specific output feature and, thus, receives 
the error in this feature. Each neuron of the hidden layer receives a combined 
error signal from all output neurons weighted by the corresponding wiring 
weights. These are used to adjust the gradient elements by using the hidden 
neuron activation function as described in section F3.6.2. 

 
In the Appendix A4, a Matlab code nnn.m is presented for learning NN weights 

with the error back propagation algorithm according to the NN of Figure 3.18. 
Two parameters of the algorithm, the number of neurons in the hidden layer and 
the learning rate, are its input parameters. The output is the minimum level of er-
ror achieved and the corresponding weight matrices V and W.  

 
The code includes the following steps: 

 
1. Loading data. It is assumed that all data are in subfolder Data. According to 

the task, this can be either iris.dat or stud.dat or any other dataset.  
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2. Normalizing data. This is done by shifting each column to its midrange 
with the follow-up dividing it by the half-range, after which all data set is multi-
plied by 10, to have them in [-10,10] scale as described above. 

 
3. Preparing input and output training sub-matrices. This is done after the 

decision has been made of what features fall in the former and what features fall in 
the latter categories. In the case of Iris data, for example, the target is petal data 
(features w3 and w4) and input is sepal measurements (features w1 and w2) as de-
scribed. In the case of Students data, the target can be students’ marks on all three 
subjects (CI, SP and OOP), whereas the other variables (occupation categories, 
age and number of children), input. 

 
4. Initializing the network. This is done by: (a) specifying the number of hid-

den neurons H, (b) filling in matrices W and V with random (0,1) normally distrib-
uted values, and (c) setting a loop over epochs with the counter initialized at zero. 

 
5. Organizing a loop over the entities. For setting a random order of entities 

to be processed, the Matlab command randperm(n) for making a random permuta-
tion of integers 1, 2,…, n can be used.  

 
6. Forward pass. Given an entity, the output is calculated, as well as the error, 

using the current V, W and activation functions. The program uses the symmetric 
sigmoid (3.16′) as the activation function of hidden neurons. 

 
7. Error back-propagation. Gradient matrices for V and W according to for-

mulas (3.22) and (3.23) are computed. 
 
8. Weights V and W update.  Having the gradients computed and learning 

rate accepted as the input, updated W and V are computed according to (3.19).  
 
9. Halt-condition. This includes both the level of precision, say 0.01, and a 

threshold to the number of epochs, say, 5,000. If either is reached, the program 
halts. 

 
Q.3.14. Prove that the derivatives of sigmoid (3.16) or hyperbolic tangent (3.16′) 
functions appear to be simple polynomials of themselves. Specifically, 

 
s′(x)= ((1+ e-x)-1)′=(-1)(1+ e-x)-2(-1)e-x =s(x)(1-s(x)),  (3.24) 

   
th′(x)= [2∗s(x)-1]′=2∗s(x)′=2∗s(x)∗(1-s(x))=(1+th(x))∗(1-th(x))/2  (3.24’)                       
 

Q.3.15. Find a way to improve the convergence of the process, for instance, with 
adaptive changes in the step size values. 
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Q.3.16. Use k-fold cross validation to provide estimates of variation of the results 
regarding the data change. 
 
Q.3.17.  Develop a criterion for learning a category by using the contribution of 
the partition to be built to the category. 

3.7 Summary 

The goal of this chapter is to present a significant variety of techniques for 
learning correlation from data. Most popular concepts – Bayes classifiers, decision 
trees, neuron networks and support vector machine – are presented along with 
more generic linear regression and discrimination. Some of these are accompanied 
with concepts that are interesting on their own such as the bag-of-words model or 
kernel. The description, though, is rather fragmentary, except perhaps the classifi-
cation trees for which a number of theoretical results is invoked to show their firm 
relations to bivariate analysis, first, summary Quetelet indexes in contingency ta-
bles and, second, normalization options for dummy variables representing target 
categories. 

 
Overall, the chapter contents reflect the current state of the art on the subject of 

learning correlations from data. Perhaps the subject is too big and major advances 
are a matter of future rather than the past.     
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Abstract    

This Chapter describes the method of principal components (PCA) within a 
framework for data-driven data summarization modeling. The model underlying 
the method proposes that the data entries, up to the errors, are products of hidden 
factor scores and feature loadings. This appears to be equivalent to finding what is 
known in mathematics as the singular value decomposition (SVD) for rectangular 
matrices. The method applies to three goals: (1) scoring hidden aggregate factors, 
(2) visualization of the data, and (3) feature space reduction. Unlike the conven-
tional formulation of PCA, our presentation derives the property that the principal 
components are linear combinations of features rather than postulates it.  

Two more distant applications of PCA, Latent semantic analysis (for disam-
biguation in document retrieval) and Correspondence analysis (for visualization of 
contingency tables), are explained too. 

A special attention is given to the issue of data standardization in data summa-
rization problems.  
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4.1 Decoder based data summarization 

4.1.1 Structure of a summarization problem with decoder 

Summarization as a concept covers many activities from data compression to la-
beling a dataset with a phrase like “Archeology finds indicate no King David Pal-
ace at the time of King David”. Principal component analysis lies somewhere be-
tween these two to summarize the observed features in somewhat sharper 
structures. In contrast to a correlation problem, the features are not divided here 
into those belonging to input or output of the phenomenon under consideration. It 
is a different situation. One may think of this as that all features available are tar-
get features so that those to be constructed as a summary are in fact “hidden input 
features”.   

      

 

Input data                   Rule                 Predicted
                                                              data          

Target data                                     (b)
                             Difference 

                            (a) 
 
     Data 

                             Difference 
   Summary               Decoder               Decoded

                                                                data           

  Data                Summary 
                                        (c) 

Figure 4.1. A diagram for coder/decoder data summarization (a) versus learning 
input-target correlation (b) or summarization with no decoder (c). Rectangles are 
for observed data, ovals for computational constructions, hexagons for feedback 
comparisons. 
 
In this way, the structure of a summarization problem may be likened to that of a 
correlation problem if a rule is provided to predict all the “target” – that is,  origi-
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nal – features from the summary. If such is the case, then there are two rules in-
volved in a summarization problem: one for building the summary, the other to 

rovide a feedback from the summary to the observed data.  

sing 

s just deriving a sum-
ary from data without any feedback (see Figure 4.1 (c)).  

on 

iza-

 be expressed in terms of decoder based criteria as 
presented on Figure 4.1 (a). 

P4.1.2 Data recovery criterion: Presentation 

p
 
Unlike in the correlation problem, though, here the feedback rule must be pre-
specified so that the focus is on building a summarization rule rather than on u
the summary for prediction; this is why we refer to the feedback rule as a “de-
coder” rather than a “predictor”.  In the machine learning literature, the issue of 
data summarization has not been given yet that attention it deserves; this is why 
the problem is usually considered somewhat simplistically a
m
 
A proper consideration of the structure of a summarization problem should rely 
the existence of a decoder to provide the feedback from a summary back to the 
data and make the summarization process more or less similar to that of the corre-
lation process  (see Figure 4.1 (a) versus 4.1 (b)).  More exactly, a decoder is a de-
vice that translates the summary representation encoded in the chosen summar
tion rule back into the original data format. This allows us to utilize the same 
criterion of minimization of the difference between the original data and those 
output by the decoder: the less the difference, the better. This text is largely con-
cerned with methods that can

The data recovery approach in data summarization is based on the assumption 
that there is a regular structure in the phenomenon of which the observed dataset 
informs. This regular structure A is the summary to be found. When A is deter-
mined, this can feed back to the observed data Y in the format of the decoded data 
F(A) that should coincide with Y up to residuals, that are due to possible flaws in 
any or al ts:  l of the following three aspec

(a) bias in entity sampling,  
(b) selecting and measuring features, and  
(c) adequacy of the set of admissible A structures to the phenomenon in 

qu ion.  est
 
Each of these three can drastically affect results. However, so far only the sim-

plest of the aspects, (a) sampling bias, has been addressed scientifically, in statis-
tics, – as a random bias, due to the probabilistic nature of the data. The other two 
are subjects of much effort in specific domains but not in the general computa-
tional data analysis framework as yet. Rather than focusing on accounting for the 
causes of errors, let us consider the underlying equation in which the errors are 
looked at as a whole:  
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 Observed_Data Y =  Model_Data F(A) + Residuals E (4.1) 

 
 
 
 
 
 
 

Figure 4.2. Geometric relation between the observed data (pentagram), the fitted 
model data (black rectangle), and the residuals (connecting line). 

 
This equation brings in an inherent data recovery criterion for the assessment of 

the quality of the model A in recovering data Y - according to the level of residuals 
E: the smaller the residuals, the better the model. Since a data model typically in-
volves unknown parameters, this naturally leads to the idea of fitting these pa-
ram ters to the data in such a way that the residuals become as small as possible.  e

  
In many cases this principle can be rather easily implemented as the least 

squares principle because of an extension of the Pythagoras theorem relating the 
square lengths of the hypotenuse and two other sides in a right-angle triangle con-
necting “points” Y, F(A) and 0 (see Figure 4.2). The least squares criterion re-
quires fitting the model A by minimizing the sum of the squared residuals. Geo-
metrically, it often means an orthogonal projection of the data set considered as a 
multidimensional point onto the space of all possible models represented by the x 
axis on Figure 4.2. In such a case the dataset (pentagram), its projection (rectan-
gle) and the origin (0) form a right-angle triangle for which a multidimensional 
extension of the Pythagoras’ theorem holds. The theorem states that the squared 
length of the hypotenuse is equal to the sum of squares of two other sides. The 
squared hypotenuse translates into the data scatter, that is, the sum of all the data 
entries squared, being decomposed in two parts, the part explained by the sum-
mary model A, that is, the contribution of the line between 0 and rectangle, and the 
part left unexplained by A. The latter part is the contribution of the residuals E ex-
pressed as the sum of squared residuals, which is exactly the least squares crite-
rion. This very decomposition was employed in the problems of linear and non-
linear regression in sections 2.1 and 3.3, classification trees in section 3.5, and it 
will be used again in further described methods: Principal component analysis and 
K-Means clustering, as well as additive clustering.  

 
When the data can be considered as a random sample from a multivariate 

Gaussian distribution, the least squares principle can be derived, under some sim-
plifying assumptions, from a major statistical principle, that of maximum likeli-
hood. In the data analysis framework, the data do not necessarily come from a 
probabilistic population. Still, the least squares framework frequently provides for 

                                                 Data Y 
 
                                                               Residuals E 
     
                                     Model Data F(A)     0
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solutions that are both practically relevant and theoretically sound. The least 
squares will be the only criterion utilized in this text.  

F4.1.2 Data recovery criterion: Formulation 

A decoder based summarization problem can be stated as follows. Given N 
vectors forming a matrix Y= {( y )} with rows yi i =(yi1,…,yiV) of V features observed 
at entities i =1, 2, …, N and a set of admissible summary structures A with 
decoder D: A ⇒ Rp,  build a summary  

A = F(Y),  A ∈ A        
    

such that the error, which is the difference between the decoded data D(A ) and 
observed data Y, is minimal over the class of admissible rules F. More explicitly, 
one assumes that  

                   Y = D(A)+ E    (4.2) 
 
where E is matrix of residual values, or errors: the smaller the errors, the better the 
summarization A. According to the least-squares approach, the errors are mini-
mized by minimizing the summary, or average, squared error: 

 
E2=<Y- D(A), Y- D(A)>=<Y-D(F(Y)), Y-D(F(Y))>  (4.3) 

 
with respect to all admissible summarization rules F.  

Expression (4.3) can be further decomposed into  
 

E2=<Y, Y>− 2<Y, D(A)>+< D(A), D(A)> 
 
In many data summarization methods, such as the Principal component analysis 

and K-Means clustering described later in sections 4.2 and 5.1, the set of all possi-
ble decodings D(F(Y)) forms a linear subspace. In this case, the data matrices Y 
and D(A), considered as multidimensional points, form a “right-angle triangle” 
around the origin 0, as presented on Figure 4.2 above. In such a case <Y, 
D(A)>=< D(A), D(A)> and the square error  (4.3) becomes part of a multivariate 
analogue to the Pythagorean equation relating the squares of the “hypotenuse”, Y, 
and the “sides”, D(A) and E:     

 
<Y, Y>=< D(A), D(A)>+ E2  , (4.4) 

 
or on the level of matrix entries, 

222
iv

VvIi
iv

VvIi
iv

VvIi
edy ∑∑∑∑∑∑

∈∈∈∈∈∈

+=       (4.4′) 
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The data is an N x V matrix Y=(yiv) that can be considered as either set of 
rows/entities y  (i=1,…, N) or set of columns/features yi v (v=1,…, V) or both. The 
item on the left in (4.4′) is usually referred to as the data scatter and denoted by 
T(Y),  

2)( iv
VvIi

yYT ∑∑
∈∈

=    (4.5) 

Why is this termed “scatter”? Indeed, T(Y) is the sum of Euclidean squared 
distances from 0 to all entities, thus a measure of scattering them around 0. In fact, 
T(Y) has a dual interpretation. On the one hand, T(Y) is the sum of row-based 
entity contributions, the squared distances d(yi,0) (i=1,…,N). On the other hand, 
T(Y) is the sum of column-based feature contributions tv=Σi∈I yiv

2. In the case 
when the average cv has been subtracted from all values of the column v,  the 
summary contribution tv is N times the variance, 2tv =Nσv . 

arization.  

 
Q.4.1. Prove that the summary contribution tv is N times the variance, tv =Nσ 2

v  
if feature v is centered. A. Indeed, tv=Σi∈I yiv

2 2=Σi∈I (yiv  -c )   = N[Σv  i∈I (yiv  -c )v  
2/N]= Nσv

2, where cv is the mean of feature v. 

4.1.3 Data standardization 

The least-squares solutions highly depend on the feature scales and may be 
highly affected by the scale changes, as decomposition (4.4′) on clearly 
demonstrates. This is not exactly the case in correlation problems, at least in those 
with only one target feature, because the least squares there are, in fact, just that 
feature’s errors, thus all expressed in the same scale. The data standardization 
problem, which is rather marginal at learning correlations, is of a great importance 
in data summarization. The problem of data standardization can be reformulated 
as the issue of defining the relative relevance, or importance, among the features. 
The greater the range of v, the greater the contribution tv, thus the greater the 
relevance of v. There can be no universal answer to the issue of feature 
importance, because the answer always depends on the goal of summ

 
The assumption of equal importance of features currently underlies all the ef-

forts and makes the entire edifice of data analysis somewhat crippled – but there is 
nothing new in this. As the history of science clearly demonstrates, any break-
through in the sciences starts with a rather shaky data base. 

 
To balance contributions of features to the data scatter, one conventionally ap-

plies the operation of data standardization comprising two transformations, shift of 
the origin and rescaling.  
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We already encountered standardization while studying multivariate classifiers, 
decision trees and neural networks. In neural networks as well as in Support vector 
machine, the standardization involves the scale shift to the midrange and rescaling 
by normalizing the feature values by the half-range. These parameters are distribu-
tion independent.  

 
 
 
 
 
 (a) (b)
Figure 4.3. One-modal distribution shape on (a) versus a two-modal distribu-

tion shape on (b): the standard deviation of the latter is greater, thus making it less 
significant under the z-scoring standardization.  

 
Another, much more popular, choice is the feature’s mean for the scale shift 

and normalizing by the standard deviation for rescaling. This standardization is a 
cornerstone in mathematical statistics and it works very well if observations come 
from a Gaussian distribution, because the distribution becomes parameter-free if 
standardized by subtracting the mean followed by dividing over the standard de-
viation. In statistics, this transformation is frequently referred to as z-scoring. In 
the context of data analysis, though, distributions are rarely Gaussian and rarely of 
any popular family at all; moreover, observations are not necessarily random or 
independent. In these circumstances, the choice of shifting and rescaling needs a 
rethink. 

 
First of all, the two operations should be separated: shifting the origin has noth-

ing to do with balancing feature weights. The goal of the shifting is to position the 
data against a backdrop of a “norm” which is put to the origin by the shift. In this 
way, the analysis involves the differences of the data and the norm. The experi-
mental evidence accumulated in the ever growing body of data analysis research 
suggests that it is much easier to find meaningful structures in the differences than 
when they are mixed with the norm. According to the least squares criterion, it is 
the mean that approximates the overall “norm” the best. Since this criterion under-
lies all the methods considered in this text, the mean – sometimes referred to as 
grand mean, to point out its position over the entire entity set – will be the choice 
for the origin. 

 
The normalization seems to be better if done by half-range or, equivalently, the 

range, indeed. On the first glance, there is no advantage in normalization by the 
range. Z-scoring seems a better choice, especially since z-scoring satisfies the in-
tuitively appealing equality principle – all features contribute to the data scatter 
equally after dividing them by the standard deviations. 
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This view is, however, overly simplistic. In fact, the feature’s contribution to 
the data scatter is affected by two unrelated factors: (a) the feature scale range and 
(b) the distribution shape. While reducing the effect of the former, normalization 
should not suppress the effect of the latter because the distribution shape is an im-
portant indicator of the data structure. But the standard deviation involves both 
and thus mixes them up. Take a look, for example, at distributions of two features 
presented on Figure 4.5. One of them has one mode only (a), whereas the other 
has two modes (b).  Since the features have the same range, the standard deviation 
is greater for the distribution (b), which means that its relative contribution to the 
data scatter decreases under z-scoring standardization. This means that its clear cut 
discrimination between two parts of the distribution will be stretched in while the 
unimodal structure, which is hiding the two-part structure, will be stretched out. 
This is not exactly what we want of data standardization. Data standardization 
should help in revealing the data structure rather than concealing it. Thus, nor-
malization by the range helps in bringing forward multimodal features by assign-
ing them relatively larger weights proportional to their variances.  

 
Therefore, in contrast to conventional wisdom, z-scoring standardization 

should be avoided unless there is a strong indication that the data come from a 
Gaussian distribution indeed. Any index related to the scale range can be used for 
normalization. In this text, the range is universally accepted. If, however, there is a 
strong indication that the range may be subject to outlier effects and, thus, unsta-
ble and random, more stable indexes could be used for normalization  such as, for 
example, the distance between upper and lower 1% quintiles. 

 
Worked example 4.1. Standardizing Iris dataset 
 

Consider Iris dataset in Table 0.3. Its grand mean and midrange are presented in Table 4.1, 
along with its range and standard deviations.  

 
Table 4.1. Characteristics of Iris dataset 
               

Characteristics              Features  
 w1      w2      w3      w4  

Mean m 5.84    3.06    3.76    1.20  
Midrange mr 6.10    3.20    3.95    1.30  
Standard deviation s 0.83    0.44    1.77    0.76  
Range ra 3.60    2.40    5.90    2.40  

 
These have been found by using the following MatLab commands: 

>> iris=load(′Data\iris.dat′); 
>> m=mean(iris); % grand mean 
>> ma=max(iris);% maximum 
>> ma=min(iris);% minimum 
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>> mr=(ma+mi)/2; % midrange 
>> s=std(iris);% standard deviation 
>> ra=ma-mi;% range 
 
Midrange more or less follows the grand mean, but there are some discrepancies be-

tween the range and standard deviation. For example, ranges of v2 and v4 are the same, 
whereas standard deviations differ by almost 100%.  

 
Let us take three different standardizations: 
A – range related, y⇐(x-mr)/ra; 
B – mean/range standardization, y⇐(x-m)/ra; 
C – z-scoring, y⇐(x-m)/s; 
 
and evaluate feature contributions to the data scatter after each of them (Table 4.2): 
 
Table 4.2.  Iris feature contributions to data scatter after different standardizations, per 

cent to the data scatter value. 
 

Standardization               Features 
   w1      w2       w3       w4 
54.76   15.00   27.07    3.17 No standardization 
20.16   12.70   31.48   35.66 A: midrange/range 
19.15   11.94   32.40   36.51 B: mean/range 
25.00   25.00   25.00   25.00 C: mean/std 

                               
Feature contributions under A and B are similar, because both involve division by the 

range. According to these standardizations features w3 and w4 contribute most, because 
they are bimodal (see Q.1.24 and Figure 1.19) and, thus play important role in further 
summarization methods, both Principal component analysis and cluster analysis. This con-
curs with the botanists’ view that it is these sizes that determine the belongingness of an Iris 
specimen to a specific taxon (see references in Mirkin 2005). Moreover, at building a clas-
sification tree over Iris dataset, it was feature w4 that was involved in the splits according 
to three goodness criteria (see Figure 3.11 in section 3.4). In contrast, the first line assigns 
contributions according to feature values so that the lengths w1 and w3 get much larger 
contributions than the widths w2 and w4. And z-scoring (standardization C) makes all fea-
tures contribute similarly, even in spite of the fact that two of them are bimodal.   

. 
The problem of standardization can be addressed by the user if they know the 

type of the distribution behind the observed data – the parameters of the distribu-
tion typically lead to a reasonable standardization. For example, the data should be 
standardized by z-scoring if the data is generated by independent one-dimensional 
Gaussian distributions. According to the formula for Gaussian density, a z-scored 
feature column would then fit the conventional N(0,1) distribution making all fea-
tures comparable to each other A similar strategy applies if the data is generated 
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from a multivariate Gaussian density, just the data first needs to be transformed 
into mutually orthogonal singular vectors or, equivalently, principal components. 
Then z-standardization applies.  

 
If no reasonable distribution can be assumed in the data, then there is no uni-

versal advice on standardization. However, with the summarization problems that 
we are going to address, the principal component analysis and clustering, some 
advice can be given in terms of the data scatter.  

 
The data transformation effected by the standardization can be expressed as 

 
yiv = (xiv –av)/bv    (4.6) 

 
where X=(xiv) stands for the original and Y=(yiv) for standardized data, whereas 
i∈I denotes an entity and v∈V a feature. Parameter av stands for the shift of the 
origin and bv for normalizing factor at each feature v∈V. In other words, one may 
say that the transformation (4.6), first, shifts the data origin into the point a=(av), 
after which each feature v is rescaled separately by dividing its values over bv. 

 
The position of the space’s origin, zero point 0=(0,0,…,.0), at the standardized 

data Y is unique because any linear transformation of the data, that is, any matrix 
product CY can be expressed as a set of rotations of the coordinate axes around the 
origin, so that the origin itself is invariant. The principal component analysis can 
be expressed mathematically as a set of linear transformations of the data features 
as becomes clear in section 4.2, which means that all the action in this method 
occurs around the origin. Metaphorically, the origin can be likened to the eye 
through which data points are looked at by the methods below. Therefore, for the 
purposes of data analysis, the origin should be put somewhere in the center of the 
data set, for which the gravity center, the point of all within-feature averages, is a 
best candidate. What is nice about it is that the feature contributions to the scatter 
of the center-of-gravity standardized data (4.5) above are equal to tv=Σi∈I yiv

2 

(v∈V), which means that they are proportional to the feature variances. Indeed, 
after the average cv has been subtracted from all values of the column v, the 
summary contribution satisfies equation tv =Nσv

2  so that tv is N times the 
variance. Even nicer properties of the gravity center as the origin have been 
derived in the framework of the simultaneous analysis of the categorical and 
quantitative data, see in sections 3.5 and 5.2. 

e 4.5.  

 
As to the normalizing coefficients, bv, their choice is underlied by the idea of 

balancing the features weights. A most straightforward expression of the principle 
of feature equal importance is the use of the standard deviations as the 
normalizing coefficients, bv =σv. This standardization makes the variances of all 
the variables v∈V equal to 1 so that all the feature contributions become equal to 
tv = N, which is seen at Tabl
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A very popular way to take into account the relative importance of different 

features is by using weight coefficients of features in computing the distances. 
This, in fact, is equivalent to and can be achieved with a proper standardization. 
Take, for instance, the weighted squared Euclidean distance between arbitrary 
entities x=(x1, x2  ,xM) and y=(y1, y2  , yM) which is defined as 

 
                  Dw(x,y)= w1(x1-y1)2+ w2(x2  - y2)2+…+ wM(xM - yM)2        (4.6 ) 
 
where wv  are a pre-specified weights of features v∈V. Let us define (additional) 

normalizing parameters  bv= 1/√wv  (v∈V) to transform x and y into x′v = xv/bv  and 
y′v = yv/bv. It is rather obvious that  

 
Dw(x,y)=d(x′,y′)  

 
where d is the unweighted Euclidean squared distance.  
 
That is, the following fact holds: for the Euclidean squared distance, the feature 

weighting is equivalent to an appropriate normalization as described above.  
 
Q.4.2. Is it true that the sum of feature values standardized by subtracting the 

mean is zero?A. Yes, because the sum is proportional to the mean which is zero 
after centering. 

 
Q.4.3. Consider a reversal of the operations in standardizing data: the scaling to 

be followed by the scale shift. Is it that different from the conventional standardi-
zation? A. Denote the scale shift and rescaling factor by a and b. Then the conven-
tional standardization produces y=(x-a)/b=x/b – a/b from x, whereas that sug-
gested gives z=x/b – a. These differ at a≠0. To make them equal, the scale shift in 
the latter case must be a/b.   

 
C4.1 Data standardization: Computation 
 
For the N×V data set X, its V-dimensional arrays of averages, standard devia-

tions and ranges can be found in MatLab with respective operations 
>> av=mean(X); 
>> st=std(X,1);  % here 1 indicates that divisor at sigmas is N rather than N-1 
>> ra=max(X)-min(X); 
 
To properly standardize X, these V-dimensional rows must be converted to the 

format of N×V matrices, which can be done with the operation repmat(x,m,n) that 
expands a p×q array x into an mp×nq array by replicating it n times horizontally 
and m times vertically as follows: 
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>>avm=repmat(av, N,1); 
>>stm=repmat(st, N,1); 
>>ram=repmat(ra, N,1); 
 
These are N×V arrays, with the same lines in each of them – feature averages 

in avm, standard deviations in stm, and ranges in ram. 
 
To range-standardize the data, one can use a non-conventional MatLab opera-

tion of the entry-wise division of arrays: 
>>Y=(X-avm)./ram; 

Project 4.1. Standardization of mixed scale data and its effect 

 
Pr4.1.A Data table and its quantization 
 
Consider the Company dataset in Table 4.3. 
 
The table contains two categorical variables, EC, with categories Yes/No, and 

Sector, with categories Utility, Industrial and Retail. The former feature, EC, in 
fact represents just one category, “Using E-Commerce” and can be recoded as 
such by substituting 1 for Yes and 0 for No. The other feature, Sector, has three 
categories. To be able to treat them in a quantitative way, one should substitute 
each by a dummy variable. Specifically, the three category features are:  

 
Table 4.3. Data of eight companies producing goods A, B, or C, depending on 

the intial symbol of company’s name. 
Company    Income SharP NSup EC Sector 
  Aversi 
  Antyos 
  Astonite 

19.0 
29.4 
23.9 

43.7 
36.0 
38.0 

2 
3 
3 

No 
No 
No 

Utility 
Utility 
Industrial 

 Bayermart 
 Breaktops 
 Bumchist 

18.4 
25.7 
12.1 

27.9 
22.3 
16.9 

2 
3 
2 

Yes 
Yes 
Yes 

Utility 
Industrial 
Industrial 

  Civok 
 Cyberdam 

23.9 
27.2 

30.2 
58.0 

4 
5 

Yes 
Yes 

Retail 
Retail 

 
(i) Is it Utility sector?  
(ii) Is it Industrial sector?  
(iii) Is it Retail sector? –   

each admitting Yes or No values, respectively substituted by 1 and 0. In this way, 
the original heterogeneous table will be transformed into a quantitative matrix in 
Table 4.4. 
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Table 4.4. Quantitatively recoded Company data table, along with summary 

characteristics 

Company  Income SharP NSup EC Util Indu Reta 
 Aversi 19.0 43.7 2 0 1 0 0 
 Antyos 29.4 36.0 3 0 1 0 0 
 Astonite 23.9 38.0 3 0 0 1 0 
 Bayermart 18.4 27.9 2 1 1 0 0 
 Breaktops 25.7 22.3 3 1 0 1 0 
 Bumchist 12.1 16.9 2 1 0 1 0 
 Civok 23.9 30.2 4 1 0 0 1 
 Cyberdam 27.2 58.0 5 1 0 0 1 
 Average 22.45 34.12 3.0 5/8 3/8 3/8 ¼ 
 St deviation 5.26 12.10 1.0    0.48    0.48 0.48 0.43 
 Midrange 20.75 37.45 3.5 0.5 0.5 0.5 0.5 
 Range 17.3 41.1 3.0 1.0 1.0 1.0 1.0 

 
The first two features, Income and SharP, dominate the data table in Table 4.2, 

especially with regard to the data scatter, that is, the sum of all the data entries 
squared, equal to 14833. As shown in Table 4.5, the two of them contribute more 
than 99% to the data scatter. To balance the contributions, features should be re-
scaled. Another important transformation of the data is the shift of the origin,  be-
cause it affects the value of the data scatter and the decomposition of it in the ex-
plained and unexplained parts, as can be seen on Figure 4.3.   

 
Table 4.5. Within-column sums of the entries squared in Table 4.4. 
 
Contribution Income SharP NSup EC Util Ind Retail Data scatter 
 Absolute 4253 10487 80 5 3 3 2 14833 

 Per cent 28.67 70.70 0.54 0.03   0.02    0.02 0.01 100.00 

Pr4.1.B Visualizing the data unnormalized 

One can take a look at the effects of different standardization options. Table 4.6 
contains data of Table 4.4 standardized by the scale shifting only: in each column, 
the within-column average has been subtracted from the column entries. Such 
standardization is referred to as centering. 

 
The relative configuration of the 7-dimensional row-vectors in Table 4.6 can be 

captured by projecting them onto a plane, which is a two-dimensional, in an opti-
mal way; this is provided by the two first singular values and corresponding singu-
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lar vectors, as will be explained later in section 4.2. This visualization is presented 
on Figure 4.4 at which different product companies are shown with different 
shapes: squares (for A), triangles (for B) and circles (for C). As expected, this 
bears too much on features 2 and 1 that contribute  83.2% and 15.7%, respec-
tively, here; a slight change from the original 70.7% and 23.7%  according to Ta-
ble 4.5. The features seem not related to products at all – the products are ran-
domly intermingled with each other on the picture.  

 
Table 4.6. The data in Table 4.4 standardized by the shift scale only, with the 

within-column averages subtracted. The values are rounded to the nearest two-
digit decimal part, choosing the even number when two are the nearest. The rows 
in the bottom represent contributions of the columns to the data scatter as they are 
and per cent. 

 
Ave -3.45  9.58  -1.00  -0.62   0.62  -0.38  -0.25  
Ant  6.95  1.88   0     -0.62   0.62  -0.38  -0.25  
Ast  1.45  3.88   0     -0.62  -0.38   0.62  -0.25  
Bay -4.05 -6.22  -1.00   0.38   0.62  -0.38  -0.25  

 3.25 -11.82  0      0.38  -0.38   0.62  -0.25  Bre  
-10.4 -17.22 -1.00   0.38  -0.38   0.62  -0.25 Bum  
 1.45  -3.92  1.00   0.38  -0.38  -0.38   0.75 Civ  
 4.75  23.88  2.0    0.38  -0.38  -0.38   0.75 Cyb  

Cnt 221.1 1170.9  8.0    1.9    1.9    1.9    1.5  
Cnt %  15.7   83.2  0.6    0.1    0.1    0.1    0.1  

 

Bayermart 

Breaktops 

Bumchist 

Civok

Cyberdam 

Aversi 

Antyos 

Astonite 

 
Figure 4.4. Visualization of the entities in Companies data, subject to centering 

only. 
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Pr4.1.C Standardization by z-scoring 

Consider now a more balanced standardization involving not only feature cen-
tering but also feature normalization over the standard deviations – z-scoring, as 
presented in Table 4.7.  

 
An interesting property of this standardization is that contributions of all fea-

tures to the data scatter are equal to each other, and moreover, to the number of 
entities, 8! This is not a coincidence but a property of z-scoring standardization. 

 
The data in Table 4.7 projected on to the plane of two first singular vectors bet-

ter reflect the products – on Figure 4.5, C companies are clear-cut separated from 
the others; yet A and B are still intertwined. 

 
Table 4.7. The data in Table 4.4 standardized by z-scoring. The values are 

rounded to the nearest two-digit decimal part, choosing the even number when 
two are the nearest. The rows in the bottom represent contributions of the columns 
to the data scatter as they are and per cent. 

-0.66   0.79   -1.00   -1.29   1.29   -0.77  -0.58 Ave 
 1.32   0.15    0      -1.29   1.29   -0.77  -0.58 Ant 
 0.28   0.32    0      -1.29  -0.77    1.29  -0.58 Ast 
-0.77  -0.51   -1.00    0.77   1.29   -0.77  -0.58 Bay 
 0.62  -0.98    0       0.77  -0.77    1.29  -0.58 Bre 
-1.97  -1.42   -1.00    0.77  -0.77    1.29  -0.58 Bum 
 0.28  -0.32    1.00    0.77  -0.77   -0.77   1.73 Civ 
 0.90   1.97    2.00    0.77  -0.77   -0.77   1.73 Cyb  
  8      8      8       8       8       8     8 Cnt 
 14.3  14.3    14.3    14.3   14.3    14.3  14.3 Cnt, % 

 
Table 4.7 presents the “mix” standardization involving (a) shifting the scales to 
the averages, as in z-scoring, but (b) dividing the results not by the feature’s stan-
dard deviations but rather their ranges. 

Pr4.1.D Range normalization and rescaling of dummy features 

Characteristics of the range normalized data are presented in Table 4.8. However, 
when using both categorical and quantitative features, there is a catch here: each 
of the categories represented by dummy binary variables will have a greater vari-
ance than any of the quantitative counterparts after dividing by the ranges. Table   
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Aversi 
Antyos 

Astonite 

 
Figure 4.5. Visualization of the entities in Companies data after z-scoring (Ta-

ble 4.7). 
 

4.8 represents contributions of the range-standardized columns of Table 4.4. Bi-
nary variables contribute much greater than the quantitative variables according to 
this standardization. The total contribution of the three categories of the original 
variable Sector looks especially odd – it is more than 55% of the data scatter, by 
far more than should be assigned to just one of the five original variables. This is 
partly because that one variable in the original table has been enveloped, accord-
ing to the number of its categories, into three variables, thus blowing out the con-
tribution accordingly. To make up for this, the summary contribution of the three 
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Figure 4.6. Visualization of data in Table 4.7 – standardized by dividing over 

the ranges with further subdividing the binary category features by the square 
roots of the number of them. 
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Table 4.8. Within-column sums of the entries squared in the data of Table 4.4 
standardized by subtracting the averages and dividing the results by the ranges. 

 
Contribution Income SharP NSup EC Util Ind Retail Data scatter 
 Absolute 0.739 0.693    0.889 1.875 1.875 1.875 1.500 9.446 

 Per cent 7.82 7.34 9.41 19.85 19.85 19.85 15.88 100.00 

 
dummies should be decreased back three times. This can be done by making fur-
ther normalization of them by dividing the normalized values by the square root of 
their number – 3 in our case. Why the square root is used, not just 3? Because con-
tribution to the data scatter involves not the entries themselves but their squared 
values.  

 
The data table after additionally dividing entries in the three right-most col-

umns over √3 is presented in Table 4.9. One can see that the contributions of the 
last three features did decrease threefold from those in Table 4.8, though the rela-
tive contributions changed much less. Now the most contributing feature is the bi-
nary EC that divides the sample along the product based lines. This probably has 
contributed to the structure visualized on Figure 4.8. The product defined clusters, 
much blurred on the previous figures, are clearly seen here, which makes one to 
claim that the original features indeed are informative of the products when a 
proper standardization has been carried out. 

 
Table 4.9. The data in Table 4.4 standardized by: (i) shifting to the within-

column averages, (ii) dividing by the within-column ranges, and (iii) further divid-
ing the category based three columns by √3. The values are rounded to the nearest 
two-digit decimal part. 

 
Av

An

As

Ba

Br

Bu

Ci

Cy

-0.20 

 0.40 

 0.08 

-0.23 

 0.19 

-0.60 

 0.08 

 0.27 

 0.23 

 0.05 

 0.09 

-0.15 

-0.29 

-0.42 

-0.10 

 0.58 

-0.33 

 0 

 0 

-0.33 

 0 

-0.33 

 0.33 

 0.67 

-0.63 

-0.63 

-0.63 

 0.38 

 0.38 

 0.38 

 0.38 

 0.38 

 0.36 

 0.36 

-0.22 

 0.36 

-0.22 

-0.22 

-0.22 

-0.22 

-0.22 

-0.22 

 0.36 

-0.22 

 0.36 

 0.36 

-0.22 

-0.22 

-0.14  

-0.14 

-0.14 

-0.14   

-0.14 

-0.14  

 0.43 

 0.43 

Cnt 
Cnt %

 0.74 

12.42 

 0.69 

11.66 

0.89 

14.95 

 1.88 

31.54 

 0.62 

10.51 

 0.62 

10.51 

 0.50 

 8.41 

 
Note: only two different values stand in each of the four columns on the right – 
why? 
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The entries within every column sum up to 0 (as stated in Q.4.2). 
 
Q.4.4. How to do a z-scoring in MatLab? A. Take [n,v]=size(X) where X is the 

data matrix. Then define Y=(X-repmat(mean(X,n,1))./ repmat(std(X,n,1). 
 
Q.4.5. What are the feature contributions after z-scoring? A. They all are equal 

to the same value, the data scatter related to V, the number of features. 
 
Q.4.6. How distances are affected if a different set of scale shifts is applied? A. 

As can be seen from equation (4.6) for the squared Euclidean distance in this case, 
the scale shifts cancel each other and are not part of the distances. That means the 
distances are not affected at all.  

 
Q.4.7. How to do a distribution-free standardization by shifting to mid-range 

and normalizing by half-ranges? A. See Worked example 4.1. 

4.2 Principal component analysis: model, method, usage 

P4.2 SVD based PCA  and its usage: Presentation 

The method of principal component analysis (PCA) has emerged in the 
research of “inherited talent” undertaken on the verge of 19th and 20th centuries by 
F. Galton and K. Pearson, first of all to measure talent. For the time being, it has 
become one of the most popular methods for data summarization and 
visualization. The mathematical structure and properties of the method are based 
on the so-called singular value decomposition of data matrices (SVD); this is why 
in some publications terms PCA and SVD are used as synonymous. In the UK and 
USA, though, the term PCA frequently refers only to a technique for the analysis 
of inter-feature covariance or correlation matrix by extracting most contributing 
linear combinations of features, which utilizes no specific data models and is 
considered as purely heuristic. However, this method can be related to a genuine 
decoder based data summarization model that is underlied by the SVD equations – 
in the case when the data matrix has been centered beforehand. But the centering 
can hardly make a big difference to the method as such; this is why I refer to the 
method, even when the data matrix is not centered, as PCA.  

 
There are many motivations for this method, of which we consider the following: 
 
-  1. Scoring a hidden factor 
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-  2. Data visualization  
-  3. Feature space reduction 

P4.2.1 Scoring a hidden factor 

A. Hidden factor with a multiplicative decoder 
 
Consider the following problem. Given student’s marks at different subjects, 

can we derive from this their score at a hidden factor of talent that is supposedly 
reflected in the marks? Take a look, for example, at the first six students’ marks 
over the three subjects in Table 4.10 extracted from Students data, Table 0.5: 

 
Table 4.10 Marks at three subjects for six students from Students data Table 0.5. 

 
#  SEn   OOP   CI Average 
1 
2 
3 
4 
5 
6 

    41    66    90 
    57    56    60 
    61    72    79 
    69    73    72 
    63    52    88 
    62    83    80 

  65.7 
  57. 7 
  70. 7 
  71.3 
  67. 7 
  75.0 

 
To judge of the relative strength of a student, the average mark is used in prac-

tice. This ignores the relative work load that different subjects may impose on a 
student – can you see that CI marks are always greater than SEn marks? –  and in 
fact, is purely empiric and does not allow much theoretical speculation. Let us as-
sume that there is a hidden factor, not measurable straightforwardly, the talent, 
that is manifested in the marks. Suppose that another factor manifested in the 
marks is subject load, and, most importantly, assume that these factors multiply to 
make a mark, so that a student’s mark over a subject is the product of the subject’s 
loading and the student’s talent: 

 
          Mark(Student, Subject)=Talent_Score(Student)∗Loading(Subject) 

 
One may point out two issues related to this model – one internal, the other exter-
nal.  

The external issue is that the mark, as observed, depends on many other factors 
differently affecting different students – the weather, a sleepless night or malady, 
level of interest in the subject, etc., which make the model as is overly simplistic 
and prone to errors. Well, a proponent would say, sure the model is simplistic – it 
takes on only most important factors. The others will cause errors indeed, but 
these can be tackled by minimizing them: the idea is that the hidden talent and 
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loading factors can be found by minimizing the differences between the real marks 
and those derived from the model. The PCA method is based on the least-squares 
approach so that it is the sum of squared differences between the observed and 
computed marks that is minimized in PCA.  

 
The internal issue is that the model as is admits no unique solution because it is 

the product of mark by loading that matters, not their individual values – if one 
multiples all the talent scores by a number, say Talent_Score(Student) ∗5, and si-
multaneously divides all the subject loadings by the same number, Load-
ing(Subject)/5, the product will not change. How one is supposed to compute 
something which admits no definite representation? To make a solution unique, 
conventionally, a constant norm of one or both of the items is assumed so that one 
more item into the product is admitted – that expressing the product’s magnitude. 
Then, as stated in the formulation part of this section, there is a unique solution 
indeed, with the magnitude expressed by the so-called maximum singular value of 
the data matrix with the score and load factors being its corresponding normed 
singular vectors. 

 
Specifically, the maximum singular value of matrix in Table 4.10 is 291.4, and 

the corresponding normed singular vectors are z=(0.40, 0.34, 0.42, 0.42, 0.41, 
0.45), for the talent score, and c=(0.50, 0.57, 0.66), for the loadings. That means 
that every mark in the matrix is product of three items. For example, to compute 
the model SEn value for student 6, one takes 291.4*0.45*0.50= 65.6, which is not 
that far from the observed mark of 62. Yet the model involves the product of two 
items only. To get back to our model, we need to distribute the singular value be-
tween the vectors. There is only one way to do it complying with the singular 
value equations (4.12) – by multiplying each of the vectors by the same value, the 
square root of the singular value which is 17.1. Thus, the denormalized talent 
score and subject loading vectors will be z′=(6.85, 5.83, 7.21, 7.20, 6.95, 7.64) and 
c′=(8.45, 9.67, 11.25). According to the model, the score of student 3 over subject 
SEn is the product of the talent score, 7.21, and the loading, 8.45, which is  60.9, 
quite close to the observed mark 61. Similarly, product 5.83*9.67=56.4 is close to 
56, student 2’s mark over OOP. The differences can be greater though: product 
5.83*8.45 is 49.3, which is rather far away from the observed mark 57 for student 
2 over SEn.   

 
In matrix terms, the model can be represented by the following equation 
 
 
 
                   *                                =                                              (4.7) 
 
 

6.85 57.88   66.29   77.07 
5.83 49.22   56.37   65.53 
7.21 60.88   69.72   81.05 8.45   9.67   11.25
7.20 60.83   69.67   81.00 
6.95 58.69   67.22   78.15 
7.64 64.53   73.91   85.92 
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whereas its relation to the observed data matrix, by equation 
 
 
 
                        =                    +                  +                                       (4.8) 
 
 
 

-16.88  -0.29  12.9357.88   66.29   77.07  41    66    90 
  7.78   -0.37   -5.5349.22   56.37   65.53  57    56    60 
  0.12    2.28   -2.05 60.88   69.72   81.05  61    72    79 
  8.17    3.33   -9.00 60.83   69.67   81.00  69    73    72 
  4.31 -15.22    9.85 58.69   67.22   78.15  63    52    88 
-2.53    9.09   -5.9264.53   73.91   85.92 62    83    80 

where the left-hand item is the observed mark matrix; that in the middle, the 
model-computed evaluations of the marks; and the right-hand item comprises the 
differences between the real and decoded marks.  

 
B. Error of the model 

 
Among questions that arise with respect to the matrix equation such as that in 

(4.8) are the following: 
(i) Why are the differences appearing at all?  
(ii) How can the overall level of differences be assessed?  
(iii) Can any better fitting estimates for the talent be found? 

We address them in turn. 
 

(i) Differences between real and model-derived marks 
The differences emerge because the model imposes significant constraints on 

the model-derived estimates of marks. They are generated as products of compo-
nents of just two vectors, the talent score and the subject loadings. This means that 
every row in the model-based matrix (4.7) is proportional to the vector of subject 
loadings, and every column, to the vector of talent scores. Therefore, the rows are 
mutually proportional as well as the columns. Real marks, generally speaking, do 
not satisfy such a property: mark rows or columns are typically not proportional to 
each other. More formally, this can be expressed in the following way: 6 talent 
scores and 3 subject loadings together can generate not more than 6+3=9 inde-
pendent estimates. (One more degree of freedom may go because the norms of 
these two vectors are the same.) The number of marks however, is the product of 
these, 6*3=18. The greater the size of the data matrix, M×V, the smaller the pro-
portion of the independent values, M+V, that can be generated from the model. 

 
In other words, matrix (4.7) is one-dimensional. It is well recognized in 

mathematics in the concept of matrix rank which corresponds to the “inner” di-
mension bore by a matrix – matrices that are products of two vectors are referred 
to as matrices of rank 1. 

  
(ii) Assessment of the level of differences 
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A conventional measure of the level of error of the model is the ratio of the 
scatters of the model derived matrix and the observed data matrix in (4.8). The 
scatter of matrix A, T(A), is the sum of the squares of all of A-entries or, which is 
the same, the sum of the diagonal entries in matrix A*AT, the trace(A*AT). 

 
Worked example 4.2. Explained proportion of data scatter in equation (4.8) 

 
Table 4.11. Scatters of matrices in equation (4.8) 
 

                        Scatter of               
Data matrix    Model matrix   Residual  matrix 

Absolute 
Proportion 

 86092                84908.8              1183.2 
      100                     98.63                  1.37 

 
Consider scatters of three matrices in (4.8) in Table 4.11. The residual data scatter is 

rather small and accounts for only  ε2=1183.2/86092=0.0137, that is, 1.37%, of the original 
data scatter. Its complement to unity, 98.63%, is the proportion of the data scatter explained 
by the multiplicative model. This also can be straightforwardly derived from the singular 
value, 291.4: its square shows the part of the data scatter explained by the model, 
291.42/86092 = 0.9863.  

 
Q.4. 8. In spite of the fact that some errors in (4.8) are rather high, the overall 
squared error is quite small, just about one per cent of the data scatter. Why is 
that? A. Because the data values are faraway from 0 – see Q.4.20 explaining the 
effect mathematically. 

 
(iii) The singular vector estimates are the best 

 
The squared error is the criterion optimized by the estimates of talent scores 

and subject loadings. No other estimates can give a smaller value to the error for 
data matrix in Table 4.10 than ε2=1.37%. 

 
C. Formulaic expression of the hidden factor through the data 

 
The relations between singular vectors (see equations (4.12) in section F4.2.1 

provide us with a conventional expression of the talent score as a weighted aver-
age of marks at different subjects. The weights are proportional to the subject 
loadings c′ =(8.45, 9.67, 11.25): weight vector w is the result of dividing of all en-
tries in c′ by the singular value, w=c′/291.4=(0.029, 0.033, 0.039).  For example, 
the talent score for student 1 is the w weighted average of their marks, 
0.029*41+0.033*66+0.039*90 = 6.85.  

 
The model-derived averaging allows one also to score the talent of other stu-

dents, those not belonging to the sample being analyzed. If marks of a student over 
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the three subjects are (50,50,70), their talent score will be the w-weighted average: 
0.029*50+0.033*50+0.039*70=5.81. 

 
A final touch to the hidden factor scoring can be given by rescaling it in a way 

conforming to the application domain. Specifically, one may wish to express the 
talent scores in a 0-100 scale resembling that of the original mark scales. That 
means that the score vector z′ has to be transformed into z′′= α*z′+β, where α and 
β are the scaling factor and shift coefficients, that can be found from two natural 
conditions: (a) z′′ is 0 when all the marks are 0 and (b) z′′ is 100 when all the 
marks are 100. Condition (a) means that β=0, and condition (b) calls for calcula-
tion of the talent score of a student with all top marks. Summing up three 100 
marks with weights from w leads to the value zM= 0.029*100 +0.033*100 
+0.039*100 = 10.08 which implies that the rescaling coefficient α must be 

 
Table 4.12 Marks and talent scores for six students. 
 

#  SEn   OOP   CI Average Talent 
1 
2 
3 
4 
5 
6 

    41    66    90 
    57    56    60 
    61    72    79 
    69    73    72 
    63    52    88 
    62    83    80 

  65.7 
  57. 7 
  70. 7 
  71.3 
  67. 7 
  75.0 

68.0 
57.8 
71.5 
71. 5 
69.0 
75.8 

 
100/zM=9.92 or, equivalently, weights must be rescaled as  w′=9.92*w=(0.29, 
0.33, 0.38). Talent scores found with these weights are presented in the right col-
umn of Table 4.12 – hardly a great difference from the average scores, except that 
the talent scores are slightly higher, due to a greater weight assigned to mark-
earning CI subject.  

 
In spite of the fact that the original model does not assume any averaging of the 

marks, the optimal scoring is a form of averaging indeed. However, one should 
note that it is the model that provides us with both the weights, which are the op-
timal subject loadings, and the error – these are entirely out of the picture at the 
empirical averaging.  

 
This line of thinking can be applied to any other hidden performance measures 

such as quality of life in different cities using scorings over its different aspects 
(housing, transportation, catering, pollution, etc.) or performance of different 
management sections in a big company or government.  

  
D. Sensitivity of the hidden factor to data standardization 
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One big issue related to the multiplicative hidden factor model is its instability 
with respect to data standardization that has been clearly seen at different data 
normalization options in Project 4.1. Here is another example. 

 
Worked example 4.3. Principal components after feature centering 
 
Consider now the data set in Table 4.10 analyzed above. Take the means of marks over 

different disciplines in this table, 58.8 for SEn,   67.0 for OOP, and   78.2 for CI, and sub-
tract them from the marks, to shift the data to the mean point (see Table 4.13). This would 
not much change the average scores presented in Tables 4.10, 4.11 – just shifting them back 
by the average of the means, (58.8 + 67.0 + 78.2)/3 =68. 

 
Table 4.13 Centered marks for six students and corresponding talent scores, first, as 

found as explained in A.1, and, second, that rescaled to produce extreme values 0 and 100 
if all subject marks are 0 or 100, respectively. 

#  SEn   OOP    CI Average Talent 
score 

Talent  
rescaled 

1 -17.8   -1.0   11.8  -2.3  -3.71      13.69 
2  -1.8  -11.0  -18.2   -10.3   1.48    17.60 
3   2.2     5.0     0.8     2.7   0.49    16.85 
4  10.2    6.0    -6.2     3.3   2.42    18.31 
5   4.2  -15.0     9.8    -0.3  -1.94    15.02 
6   3.2   16.0     1.8     7.0   1.25      17.42 

 
Everything changes, though, in the multiplicative model, starting from the data scatter, 

which is now 1729.7 – a 50 times reduction from the case of uncentered data. The maxi-
mum singular value of the feature centered matrix in Table 4.13, is 27.37 so that the  

 
 
                                  =                                      + +                                               (4.9) 
 
 
 
 

-6.33    6.24   -2.00 -11.51 -7.24 13.83  -17.8  -1.0   11.8 
-6.44 -13.90 -12.63    4.60  2.90  -5.53  -1.8  -11.0  -18.2 
 0.65    4.05     2.66    1.52  0.96  -1.82   2.2     5.0     0.8 
 2.65    1.27     2.87    7.52  4.73  -9.04  10.2    6.0    -6.2 
10.18 -11.21    2.60   -6.02 -3.79  7.23   4.2  -15.0     9.8 
-0.72  13.56    6.50  3.88   2.44 -4.67  3.2   16.0     1.8 

multiplicative model now accounts for only 27.372/1729.7 = 0.433=43.3% of the data 
scatter. This goes in line with the idea that much of the data structure can be seen from the 
“grand” mean (see Figure 4.11 illustrating the point), however, this also greatly increases 
the error.  In fact, the relative order of errors does not change that much, as can be seen in 
formula (4.10) decomposing the centered data (in the box on the left) in the model-based 
item, the first on the right, and the residual errors in the right-hand item. What changes is 
the denominator. The model-based estimates have been calculated in the same way as those 
in formula (4.7) – by multiplying every entry of the new talent score vector z*=(-3.71, 1.48,  
0.49,  2.42, -1.94, 1.25) over every entry of the new subject loading vector c*=(3.10, 1.95, -
3.73).  
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Worked example 4.4. Rescaling the talent score from Worked example 4.3 
 
Let us determine rescaling parameters α and β that should be applied to z*, or to the 

weights c*, in Worked example 4.3 so that at  0 marks over all three subjects the talent 
score will be 0 and at all 100 marks the talent score will be 100.  

 
As in the previous section, we first determine what scores correspond to these situations 

in the current setting. All-zero marks, after centering, become minus the average marks, -
58.8 for SEn,  -67.0 for OOP, and -78.2 for CI. Averaged according to the loadings c from 
Worked example 4.3, they produce 3.10*(-58.8) + 1.95*(-67) - 3.73*(-78.2)= -21.24. 
Analogously, all-hundred marks, after centering, become 41.2 for SEn, 33.0 for OOP, and 
21.8 for CI to produce the score 3.10*(41.2) + 1.95*(33) - 3.73*(21.8)= 110.8. The differ-
ence between these, 110.8-(-21.2)=132.0 divides 100 to produce the rescaling coefficient 
a=100/132=0.75, after which shift value is determined from the all-0 score as b=-a*(-
21.24)=16.48. Thus rescaled talent scores are in the last column of Table 4.13. These are 
much less related to the average scoring than it was the case at the original data. One can 
see some drastic changes such as, for instance, the formerly worst student 2 becoming sec-
ond best, since their deficiency over CI has been converted to an advantage because of the 
negative loading at CI. 

 
For a student with marks (50,50,70) that became (-8.8, -17.0, -8.2) after centering, the 

rescaled talent score comes from the adjusted weighting vector w=a*c=0.75*(3.10, 1.95, -
3.73)=(2.34, 1.47, -2.81) as the weighted average 2.34*(-8.8)+1.47*(-17)- 2.81*(-8.2)=-
22.73 plus the shift value b=16.48 so that the result is, paradoxically, -6.25 – less than at all 
zeros! This is again a result of the negative loading at CI. 

 
This example illustrates not only the idea of a great sensitivity of the multiplicative 

model, but, also, that there should be no mark centering when evaluating performances. 

P4.2.2 Data visualization 

For the purposes of visualization of the data entities on a 2D plane, the data set is 
usually first centered to put it against the backdrop of the center – we mentioned 
already that more structure in the dataset can be seen when looking at it from the 
center of gravity, that is, the grand mean location. What has been disastrous for 
the purposes of scoring in Worked example 4.4 is beneficial for the purposes of 
structuring. Solutions to the multiple factor model, that is, the hidden factor scor-
ing vectors which are singular vectors of the data matrix, in this case, are referred 
to as principal components (PCs). Two principal components corresponding to the 
maximal singular values are needed for a 2D representation.  
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What is warranted in this arrangement is that the PC plane approximates the data, 
as well as the between-feature covariances and between-entity similarities, in the 
best possible way. The coordinates provided by the singular vectors/ principal 
components are not unique, though, and can be changed by rotating the axes, but 
they do hold a unique property that each of the components maximally contributes 
to the data scatter. 
 
Worked example 4.5. Visualization of a fragment of Students dataset 
 
Consider four features in the Students dataset – the Age and marks for SEn, OOP and CI 
subjects. Let us center it by subtracting the mean vector a=(33.68, 58.39, 61.65, 55.35) 
from all the rows, and normalize the features by their ranges r=(31, 56, 67, 69). The latter 
operation seems a necessity because the Age, expressed in years, and subject marks, per 
cent, are not exactly comparable. Characteristics of all the four singular vectors of these 
data for feature loadings are presented in Table 4.14. 
 
Table 4.14. Components of the normed loading parts of principal components for the stan-
dardized part of Student data set; corresponding singular values, along with their squares 
expressed both per cent to their total, the data scatter, and in real. 
 

Singular 
value 

Singular 
value squared 

Contribution,  Singular vector compo-
nents per cent 
 Age      SEn    OOP    CI 

    3.33    11.12    42.34 -0.59    0.03     0.59     0.55  
    2.80     7.82    29.77  0.53    0.73     0.10     0.42 
    2.03     4.11    15.67 -0.51    0.68   -0.08    -0.51 
    1.79     3.21    12.22 -0.32    0.05   -0.80     0.51 

 
The summary contribution of the two first principal components (PCs) to the data scatter is 
42.34 + 29.77 = 72.11%, which is not that bad for educational data and warrants a close 
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Figure 4.9.  Scatter plot of the student 4D data (Age, SP marks, OO marks, CI marks) row 
points on the plane of two first principal components, after they have been centered and re-
scaled. Curiously, students of occupations AN (circled) and IT (triangled) occupy contigu-
ous regions of the plane on the right-hand picture. Pentagrams represent the mean points of 
the occupation categories AN and IT. 
 
representation of the entities on the principal components plane. The two principal compo-
nents are found by multiplication of each of the corresponding left singular vectors z1 and z2  
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by the square root of the corresponding singular value. Each entity i = 1, 2, …, N is 
represented on the PC plane by the pair of the first and second PC values (z1i*, z2i*). The 
data scatter in the PC plane is represented on Figure 4.9. The left part is just the data with 
no labels. On the right part, two occupational categories are visualized using triangles (IT) 
and circles (AN); remaining dots relate to category BA. In spite of the fact that the 
occupation has not been involved in building the PC space, its categories appear to occup
different parts of the plane, which will be explained later, in Worked exam

y 
ple 4.6. 

P4.2.3 Feature space reduction: criteria of contribution and 
interpretability   

The principal components provide for the best possible least-squares approxima-
tion of the data in a low dimension space. The quality of such a data compression 
is usually judged over (i) the proportion of the data scatter taken into account by 
the reduced dimension space and (ii) interpretability of the factors supplied by the 
PCs.  
 
Contribution of the PCA model to the data scatter is reflected in the sum of 
squared singular values corresponding to the principal components in the reduced 
data. This sum should be related to the data scatter or, equivalently, to the total of 
all singular values squared, to see the impact. For example, the 2D representation 
of 4D student data on Figure 4.13 contributes 72.11% to the data scatter, as found 
in Worked example 4.5. In the example of marks for six students in Worked ex-
amples 4.2 and 4.4, the talent scoring factor contributed 98.6% to the data scatter 
at the original data and  43.3% after centering the data. Does that mean that marks 
should not be centered at all, to get a better approximation? Not necessarily. When 
all data entries are not negative, the large contribution of a principal component is 
an artifact of the very remoteness of the data set from the origin – the farther away 
you move the data from the origin, for example, by adding a positive number to all 
the entries, the greater  the contribution. This phenomenon follows a known prop-
erty of positive fractions: if 0<a/b<1, then adding a positive c to both the numera-
tor and denominator may only increase it; the greater the c, the greater the in-
crease, so that (a+c)/(b+c) converges to 1 when c tends to infinity (see Q. 4.20). 
The analogy becomes clear if we consider b the data scatter and a, the principal 
component’s contribution. 
 
This example shows that the contribution, in spite of its firm mathematical foot-
ing, can be rather shaky an argument when data is not centered. One more crite-
rion, of interpretability, gives a different perspective. 
 
To interpret PCA results one should use the feature loadings according to the sin-
gular vectors related to features. These straightforwardly show how much a prin-
cipal component is affected by a feature: the larger the value the greater the corre-
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lation. Features with relatively high positive or negative coefficients are used to 
interpret the component, as illustrated in the worked example below. 
 
Worked example 4.6. Interpretation of principal components at the standard-
ized Student data 
  
Take a look at the first singular vector in Table 4.14 corresponding to the maximum singu-
lar value 3.33 at the standardized Students data. (Please note this 100×4 data differs from 
the 6×3 data of six students analyzed in the beginning.)  One can see that the first compo-
nent positively relates to marks over all subjects, perhaps except SEn at which the loading 
is almost zero, and negatively to the Age. That means that on average, the first factor is 
greater when a student gets better marks and is younger. Thus, the first component can be 
interpreted as the “Age-related Computer Science proficiency”. The second component (the 
second line in Table 4.14) is positively related to all of the features, especially SEn marks, 
which can be interpreted as  “Age defying inclination towards software engineering”.Then 
the triangle and circle patterns on the right of Figure 8 show that AN laborers are on the 
minimum side of the age-related CS proficiency, whereas IT occupations are high on that – 
all of which seem rather reasonable. Both are rather low on the second component, though, 
in contrast to students represented by dots, thus belonging to BA occupation category, that 
get the maximum values on it.  
 
In the early days of the development of factor analysis, yet within the psychology commu-
nity, researchers were trying to explore the possibility of achieving a more interpretable so-
lution by rotating the axes of the PC space.  The goal was to find a simple structure of the 
loadings, in which most of the loading elements are zero with a few non-zero values that 
should be as close to either 1 or -1 as possible. This goal, however, is subject to too much 
of arbitrariness and remains an open issue. Keeping singular vectors as they are, not rotated, 
has the advantage that each of them contributes to the data scatter as much as possible. This 
relates to frequently occurring real world situations in which factors underlying the phe-
nomenon of interest contribute to it differently. The PCA factors express such a structure 
formally: that most contributing is followed by the second best contributing, then by the 
third best contributing, etc. 

 
Q.4.9. Prove that the condition of statistical independence for a contingency data 
table can be equivalently reformulated as the contingency table being of rank 1. A. 
Indeed an N×V matrix of rank 1 is a matrix whose elements are products of 
components of two vectors, N- and V-dimensional ones. In the case of a relative 
contingency table, P=(pkl), the statistical independence condition, pkl = pk+ p+l for 
all rows k and columns l, shows exactly that: all elements of matrix P are products 
of components of two vectors, (pk+) and (p+l), which proves the statement.  
 
Q.4.10. What could be a purpose to aggregate the features in the Market towns’ 
data? A. Since all the features related to the extent of development of a town, the 
aggregate feature perhaps would express the extent of the town’s development. 
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F4.2 Mathematical model of PCA-SVD and its properties: 
Formulation   

F4.2.1 A multiplicative decoder  

Let us consider a data matrix X with entries xiv and standardize it into Y=(yiv) 
(i=1,2,…, N; v=1,2, …,V). The PCA model assumes hidden factor scores zi* and 
feature loadings cv* such that their product zi* cv* is the decoder for yiv, which 
can be explicated, by using additive residuals eiv, as 

 
yiv = cv*zi*+ e (4.10) iv          

 
where the residuals are to be minimized using the least squares criterion  

 
The decoder in (4.10), as a mathematical model for deriving zi* and  cv* , has a 

flaw from the technical point of view: its solution cannot be defined uniquely! 
Indeed, assume that we have got the talent score zi* for student i and the loading 
cv* at subject v, to produce zi*cv* as the estimate for the student’s mark at the 
subject. However, the same estimate will be produced if we halve the talent score 
and simultaneously double the loading: zi*cv*  = (zi*/2)(2cv*). Any other real taken 
as the divisor / multiplier would, obviously, do the same.  

  

2
iv

22 *)z*c- ( iv
VvIi

iv
VvIi

yeL ∑∑∑∑
∈∈∈∈

==
 

(4.11) 

 
A conventional remedy to this is following: specify the norms of vectors z* and 

c* to be equal to 1, and treat the multiplicative effect of the two of them as a real μ 
≥ 0. Then put the product μ z ci v in (4.10) and (4.11) instead of z *ci v* where z and c 
are normed versions of z* and c*, and μ is their multiplicative effect. The 
(Euclidean) norm ||x|| of vector x=(x1,…, xN) is defined as its length, that is, the 
square root of  ||x||2 = xTx = x1

2+x2
2+…+xN

2. Thus a vector is referred to as normed 
if its length is 1,  ||x||=1. After μ,  z and c minimizing (4.11) are determined, return 
to the talent score vector  z* and loading vector c* with formulas: z*= μ1/2z, c* 
=μ1/2c. It should be pointed out that a different norming condition such as say 
|x1|+|x2|+…+|xN |=1 would lead to a different than the singular triplet solution – it 
seems no one ever explored such an opportunity. 

 
The first-order optimality conditions to a triplet (μ, z, c) be the least-squares 

solution to (4.10) imply that μ = Tz Y c is maximum value satisfying equations
Tz=μc   and Yc=μz          (4.12) Y
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These equations for the optimal scores give the transformation of the data 
leading to the summaries z* and c*. The transformation, denoted by F(Y) in (4.1), 
appears to be linear, and combines optimal c and z so that each determines the 
other. It appears, this type of summarization is well known in linear algebra. 

  
A triplet (μ, z, c) consisting of a non-negative μ  and two vectors, c (size M×1) 

and z (size N×1) is referred to as to a singular triplet for Y if it satisfies (4.12); μ  is 
referred to as a singular value and z, c the corresponding singular vectors. What 
can be proven immediately is the following: 

 
Property 1. Any pair of singular vectors (z,c) satisfying (4.12) for a non-zero μ 
must have the same norm.  

 
Indeed, by multiplying the left-side equation in (4.12) by cT, and the right-side 

equation by zT, both from the left, one arrives at equations  cTYTz=μcTc  and 
zTYc=μzTz . Since cTYTz=(zTYc)T and both are just real numbers, the equation  
cTc=zTz  holds because μ≠0. Typically, the norms of c and z are taken to be unities. 
However, at the Principal components (4.7), they are equal to the square root of 
the singular value μ, which proves the statement.  

 
Any matrix Y can have only a finite number of singular values which is equal to 

the rank of Y. Singular vectors z corresponding to different singular values are 
necessarily mutually orthogonal, as well as singular vectors c. When two or more 
singular values coincide, their singular vectors form a linear subspace and can be 
chosen to be orthogonal, which is the case in computational packages such as 
MatLab. 

 
Therefore, z*= μ½z and c* =μ½c is a solution to the model (4.10) minimizing 

(4.11) defined by the maximum singular value of matrix Y and the corresponding 
normed singular vectors. Vectors z* and c* obviously also satisfy (4.12).  This 
leads to other nice mathematical properties.   

 
Property 2. The score vector  z* is  a linear combination of columns of Y 
weighted by c*’s components: c*’s components are feature weights in the score z* 

 
Equations (4.12) allow to map additional features or entities onto the other part 

of the hidden factor model. Consider, for example an additional N-dimemsional 
feature vector y standardized same way as Y. Its loading c*(y) is determined as 
c*(y)=<z*,y>/μ  for the talent score z*. Similarly, an additional standardized V-
dimensional entity point h has its hidden factor score defined according to the 
other part of (4.12), z*(h)=<c*,h>/μ. 
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Property 3. Pythagorean decomposition of the data scatter T(Y) relating the least 
squares criterion (4.11) and the singular value holds as follows: 

T(Y)= μ2 + L2        (4.13)  
 
This implies that the squared singular value μ2 expresses the proportion of the 

data scatter explained by the principal component z*. 

F4.2.2  Extension of the PC decoder to the case of many factors  

It is well known by now that there is not just one talent behind the human ef-
forts but a range of them. Assume a relatively small number K of different hidden 
factors z*k and corresponding feature loading vectors c*k (k=1,2,…,K; K < V), 
with students and subjects differently scored over them so that the observed 
marks, after standardization, are sums of those over the different talents: 

,**
1

ivikkv

K

k
iv ezcy += ∑

=
(4.14) 

This is again a decoder that can be used for deriving a summary from the stan-
dardized marks matrix Y=(yiv) so that the hidden score and loading vectors z*k and 
c*k are found by minimizing residuals, eiv.  To eliminate the mathematical ambigu-
ity, we again assume that z*k = μ½zk and c*k =μ½ck, where zk and ck are normed 
vectors.  

 
Assume that the rank of Y is r and K<r. Assume that the singular values of Y 

are sorted so that μ1 ≥ μ2 ≥ … ≥μr. It can be proven that the least-squares solution 
to (4.14) is provided by the maximal singular values μk and corresponding normed 
singular  zvectors k and ck (k=1, 2, …, K).  

 
The underlying mathematical property is that any matrix Y can be decomposed 

over its singular values and vectors, 

,
1

ikkvk

r

k
iv zcy μ∑

=

= (4.15) 

  
which is referred to as the singular value decomposition (SVD). In matrix terms, 
SVD can be expressed as 

T
k

T
k

r

k
k ZMCczY == ∑

=1
μ  (4.15) 
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where the right-hand item Z is N×r matrix with columns zk and C is M×r matrix 
with columns ck and M is an r×r diagonal matrix with entries μk on the diagonal 
and all other entries zero. 

 
Equation (4.15′) implies, because the singular vectors are mutually orthogonal, 

that the scatter of matrix Y is decomposed into the sum of the squared singular 
values: 

 
    T(Y) = μ1 

2  +μ2 
2  +…+μr 

2    

 
2: 

tity. 

     (4.16) 
 

This implies that the least-squares fitting of the PCA model in equation (4.14) 
decomposes the data scatter into the sum of contribution of individual singular 
vectors and the least-squares criterion L2= ∑i, v eiv

 
         T(Y) = μ1 

2  +μ2 
2  +…+μK 

2  + L2      (4.17) 
 

This provides for the evaluation of the relative contribution of the model (4.14) to 
the data scatter as (μ1 

2  +μ2 
2  +…+μK 

2)/T(Y). 
 
In particular, this part of decomposition (4.15) is used for 2D visualization: 
 

yiv* ≈  zii*c1v* + zi2*c2v* 
where the elements on the right come from the two first principal components; the 
equation holds not 100% but 100*(μ1 

2  +μ2 
2)/T(Y) percent. Every entity i∈ I is 

represented on a 2D Cartesian plane by pair (zii*, zi2*). Moreover, because of the 
symmetry, every feature v can be represented, on the same plane by pair (c1v*, 
c2v*). Such a simultaneous representation of both entities and features is referred 
to as a joint display or a biplot. As a matter of fact, features are presented on a 
biplot by not just the corresponding points, but by lines joining them to 0. This 
reflects the fact, that projections of points, representing the entities (entity 
markers), to these lines are meaningful. For a variable v, the length and direction 
of the projection of an entity marker to the corresponding line reflects the value of 
v on the en

F4.2.3 Conventional formulation using covariance matrix  

In the English-written literature, PCA is conventionally introduced in a differ-
ent way: not via the decoder based model (4.10) or (4.14),  but rather as a heuristic 
technique to build up most contributing linear combinations of features with the 
help of the data covariance matrix.  
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TThe covariance matrix is defined as V×V matrix C=Y Y/N, where Y is a cen-
tered version of the data   matrix X, so that all its columns are centered. The 
(v′,v′′)-entry in the covariance matrix is the covariance coefficient between 
features v′ and v′′; and the diagonal elements are variances of the corresponding 
features. The covariance matrix is referred to as the correlation matrix if Y has 
been z-score standardized, that is, after shifting each column to its mean, it was 
further normalized by dividing by its standard deviation. In this case, elements of 
C are correlation coefficients between corresponding variables. (Note how a 
bivariate concept is carried through to multivariate data by using matrix 
mu lication.)  

 are normed, that is, satisfy condition cTc=1, is 
equivalent to unconditionally maximizing the ratio 

 

ltip
 
The conventional PCA problem formulation goes like this. Given a centered 

N×V data matrix Y, find a normed V-dimensional vector c=(cv) such that the sum 
of Y columns weighted by c, f=Yc, has the largest variance possible. This vector is 
the principal component, termed so because it shows the direction of the 
maximum variance in data. Vector f is centered for any c, since Y is centered. 
Therefore, its variance is s2=<f,f>/N=fTf/N. The last equation comes under the 
convention that a V-dimensional vector is a V×1 matrix, that is, a column. By 
substituting Yc for f, this leads to equation s2=cT TY Yc/N. Maximizing this with 
respect to all vectors c that

( )
T T

T

c Y Ycq c =
c c

                         (4.18) 

or matrix C, corresponding to its 
ma imum eigenvalue  (latent value)  q(c) (4.18). 

igenvectors corresponding to different eigenvalues are orthogonal to each 
other.  

 
over all V-dimensional vectors c.  Expression (4.18) is well known in linear 
algebra as the Rayleigh quotient for matrix NC= YTY which is proportional to the 
covariance matrix of course. The maximum of Rayleigh quotient is reached at c 
being an eigen-vector, also termed latent vector, f

x
 
Vector a is referred to as an eigenvector for a square matrix B if Ba=λa for 

some, possibly complex, number λ which is referred to as the eigenvalue corre-
sponding to a. In the case of a covariance matrix all eigenvalues are not only real 
but non-negative as well. The number of eigenvalues of B is equal to the rank of 
B, and e

 
Therefore, the first principal component, in the conventional definition, is vec-

tor f=Yc defined by the eigenvector of the covariance matrix A corresponding to 
its maximum eigenvalue. The second principal component is conventionally de-
fined as another linear combination of columns of Y, which maximizes its variance 
under the condition that it is orthogonal to the first principal component. It is de-
fined, of course, by the second eigenvalue and corresponding eigenvector. Other 
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principal components are defined similarly, in a recursive manner, under the con-
dition that they are orthogonal to all preceding principal components; which im-
plies that they correspond to other eigenvalues, in the descending order, and the 
corresponding eigenvectors. 

at μ2 and c, defined by the multiplicative de-
coder m l, satisfy equation  

  
YTYc = μ2c,          (4.19) 

sim le relation between the eigen values λ of C and singular values μ of Y: λ =μ2.    

mptions on a linear or 
no ear relation between features and hidden factors. 

 
This construction seems rather remote from how the principal components are 

introduced above. However, it is not difficult to prove that the two definitions are 
computationally equivalent. Indeed, take equation Yc=μz from (4.12), express z 
from this as z=Yc/μ, and substitute this z into the other equation (4.12): YTz= μc, 
so that YTYc/μ = μc. This implies th

ode

 
that is, c is an eigenvector of square matrix  YTY,  corresponding to its maximum 
eigenvalue λ = μ2 T.  Matrix Y Y,  in the case when Y is centred, is the covariance 
matrix C up to the constant factor 1/N. Therefore, c in (4.19) is an egenvector of C 
corresponding to its maximum eigenvalue. This proves that the two definitions are 
equivalent when the data matrix Y is centered. The given proof also establishes a 

p
 
In spite of the computational equivalence, there are some conceptual differ-

ences between the two definitions. In contrast to the definition in F4.2.1 based on 
the multiplicative decoder, the conventional definition is purely heuristic, assum-
ing no underlying model whatsoever. It makes sense only for centered data be-
cause of its reliance on the concept of covariance. Moreover, the fact that the prin-
cipal components are linear combinations of features is postulated in the 
conventional definition, whereas this is a derived property of the optimal solution 
to the multiplicative decoder model which involves no assu

nlin
   

         
                                                                            αc    at    α>1 
     
                                                           c 
 
      xM     
                                αc    at    0<α<1 
      
                                                                          x1

  αc    at    α<0 
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Figure 4.10. Line through 0 and c in the V-dimensional feature space is com-

wing from the right-hand equation in 
(4.12). Elements of matrix YYT are inner products of rows of matrix Y to express 
similarities between corresponding entities. 

F4

 ellipsoid in the feature space, 
co isting of points μc where c is normed. The longest axis of this ellipsoid 
co

sfy equations Yc =μz  and, thus, their transpose, c Y  =μ1z . Multiplying 
T T μ 2

zTz

nd its image, ellipsoid  
c Y Yc= μ , in the feature space. The first component, c , corresponds to the 
ma

ions on the line (see Fig. 
4.1 ), because of the least-squares optimality of the decoder in (4.10) so that this 
axis is the best possible 1D representation of the data.  

zN 

 

           

prised of points αc at different α’s. 
 

Q.4.11. Can you write equations defining μ2 and z as an eigenvalue and corre-
sponding eigenvector of matrix YYT. Does this square matrix have any meaning of 
its own? A. By multiplying the left-side equation in (4.12) by Y on the left, we ob-
tain  YYTz=μYc=μ2z, the latter equation follo

.2.4  Geometric interpretation of principal components 

Take all talent score points z=(z1,…,zN) that are normed, that is, satisfy 
equation  <z,z>=1 or zTz=1 or z1

2+…+zN
2=1: they form a sphere of radius 1 in the 

N-dimensional “entity” space (Fig. 4.11 (a)). The image of these points in the 
feature space, YTz, forms a skewed sphere, an

ns
rresponds to the maximum μ, that is the first singular value of Y. 
 
[Indeed,  the first singular value μ1 and corresponding normed singular vectors 

c1, z1 sati T T T
1 1 1

the latter by the former from the right, one gets equation c1 Y Yc1= 1 , because 
=1. ] 

   

 
Figure 4.11. Sphere zTz=1 in the entity space (a) a

T 2T
1   1

ximal axis of the ellipsoid with its length equal to 2μ1. 
 
What the longest axis has to do with the data? This is exactly the direction 

which is looked for in the conventional definition of PCA. The direction of the 
longest axis of the data ellipsoid makes minimum of the summary distances 
(Euclidean squared) from data points to their project

2

 

                                            z1

     
    μ1             yV

       c1 

                                       y1 

      
                      

     (a)                                                             (b) 
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This property extends to all subspaces generated in the order of extraction of 

principal components: the first two PCs make a plane that is the best two-
dimensional approximation of the dataset; the first three make a 3D space best ap-
proximating the dataset, etc. 

 distances (Euclidean squared) from data points to their 
projections on the line. 

C4.2 Computing principal components 

The SV omposition is found with MatLab’s svd.m function  

[Z, S, C]=svd(Y); 

k is r. Typically, if all 
da

     

igure 4.13. (a) PCA at data not centered, (b)  PCA at the data after centering. 
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Figure 4.12. The direction of the longest axis of the data ellipsoid makes 

minimum the summary

D dec
 

 
where Y is N×V data matrix after standardization whose ran

ta entries come from observation, the rank r =min(N, V).  
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The utput consists of three matrices: 

 matrix of which only r columns are meaningful, r factor score normed 
co

orresponding feature loading columns (normed) of which 
onl

 the descending order on the top left, the part below and to the right is all 
zeros.  

orked example 4.7.  SVD for Six Students dataset. 

Fo tered 6×3 matrix in table 4.13 the SVD matrices are as follows: 

      

= 
  0.7111 0.4006  0.5778     0      0   17.26 

   

orked example 4.8. Standardized Student data visualized 

 with 100×4 Student data matrix Y, the following 

>>  plot(  z2*,'k.', z1*(1:35),z2*(1:35),'k^',…z1*(70:100),z2*(70:100),'ko',ad1,ad2,’kp’); 

In th t com

(ii) these are triangles to represent entities 1 to 35 – 

(iii)  these are circles to represent entities 70 to 

(iv)  
f 

within-category averages of z2*. These are represented by pentagrams. 

o
 

Z – N×N
lumns; 
C – V×V matrix of c
y r are meaningful;  
M – N×V matrix with r×r diagonal submatrix of corresponding singular values 

sorted in

 
W
 

r the cen
 

   -0.7086  0.1783  0.4534 0.4659 0.1888  0.0888    
     0.2836 -0.6934  0.4706 0.0552 0.2786  0.3697  
     0.0935  0.1841 -0.0486-0.1870 0.9048 -0.3184        
Z=    0.4629  0.0931 -0.1916 0.8513 0.0604 -0.1092   

-0.3705 -0.3374 -0.7293 0.1083 0.2279  0.3916  
     0.2391  0.5753  0.0455-0.0922 0.1116  0.7673  
  
    -0.6566 0.0846  0.7495        27.37    0     0 
C -0.2514 0.9123 -0.3232        M 0    26.13   0 = 
     

 

 
W
 
To produce the scatter-plot of Figure 4.9
MatLab commands can be used:    
 
>> subplot(1,2,1); plot(z1*,z2*,'k.'); %Fig. 4.12, picture on the left 
>> subplot(1,2,2);  

z1*,
 

e las mand, there are several items to be shown on the same plot: 
z1*, z2*, 'k.' – these (i) are black dot markers for all 100 entities exactly as on 
the plot on the left; 
z1*(1:35), z2*(1:35),'k^' – 
those in category IT; 
z1*(70:100), z2*(70:100),'ko' –
100 – those in category AN;  
ad1, ad2, ’kp’ – ad1 is a 2×1 vector of the averages of z1* over entities 1 to
35 (category IT) and 70 to 100 (category AN), and ad2 a similar vector o

 
Q.4.12.  Assume that a category covers subset S of entities and y(S) represents the 
feature mean vector over S. Prove that the supplementary introduction of y(S) 
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onto the plain of singular vectors z via equation z*=√μz=Y*y(S)/ √μ  from (4.12) 
onto the 2D PCA display is equivalent to representing the category by the aver-
ages of the 2D points z1i* and z2i* over i∈S. A. Indeed, the operation of averaging 
involves but addition and dividing by a number, which are not affected by a linear 
operation of matrix multiplication. 

aluation of the quality of visualization of the stan-
ardized Student data  

 multiply matrix mu by itself and 

re size 4x4  

ibutions of each PC 
 of the 2 first components 

rints to the screen: 

 12.2191 

 72.1145 

he proportion of the data scatter 
taken into account by the 2D visualization on Figure 4.9.  

4.3 Application: Latent semantic analysis 

  
Worked example 4.9. Ev
d
 
To evaluate how well the data are approximated by the PC plane, according to equation 
(4.17), one needs to assess the summary contribution of the first two singular values 
squared in the total data scatter. To get the squares one can
then see the proportion of the first two values in the total: 
 
>> mu=m(1:4,:); %no need in 4x100 matrix output, have a squa
>> la=diag(mu*mu);% make squares and put them as a vector 
>> lar=la*100/sum(sum(la))  % vector of the relative contr
>> lar(1)+lar(2) % contribution
 
This p
lar = 
   42.3426 
   29.7719 
   15.6664 
  
 
ans = 
  
 
The latter is the sum of two first elements of the former – t

The number of papers applying PCA to various problems – image analysis, in-
formation retrieval, gene expression interpretation, complex data storage, etc. – 
makes many hundreds published annually. Still there are several applications that 
are well established techniques on their own. We present two such techniques: La-
tent semantic indexing (analysis) in this section and Correspondence analysis, in 
the next section. 
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P 4.3 Latent semantic analysis: Presentation 

Latent semantic analysis is an application of PCA to document analysis – in-
formation retrieval, first of all, using document-to-keyword data.  

 
Information retrieval is an application that no computational data analysis may 

skip: given a set of records or documents stored, find out those related to a specific 
query expressed by a set of keywords. Initially, at the dawn of computer era, when 
all the documents were stored in the same database, the problem was treated in a 
hard manner – only documents containing the query words were to be given to the 
user. Currently, this is a much softer problem that is being constantly and effi-
ciently solved by various search engines such as Google, for millions of World 
Wide Web users. 

 
In its generic format, the problem can be illustrated with data in Table 4.15, al-

ready utilized as Table 3.1 in section 3.2.  It refers to a number of newspaper arti-
cles related to subjects such as entertainment, feminism and households, conven-
iently coded with letters E, F and H, respectively. Columns correspond to 
keywords, or terms, listed in the first line of the table, and entries refer to term 
frequency in the articles, according to a conventional coding scheme: 

0 – no occurrence, 
1 – occurs once, 
2 – occurs twice or more. 

 
Table 4.15. Database of 12 newspaper articles along with 10 terms and the 

conventional coding of term frequencies. The articles are labeled F for Feminism, 
E for Entertainment and H for Household. One line holds document frequencies of 
terms (df) and the other, inverse document frequency weights (idf).  

 
                  Keyword   Article  

drink equal   fuel     play   popular   price    relief   talent   tax    woman        
F1 1    2    0    1    2    0    0    0    0    2    
F2 0    0    0    1    0    1    0    2    0    2    
F3 0    2    0    0    0    0    0    1    0    2  
F4 2    1    0    0    0    2    0    2    0    1  
E1 2    0    1    2    2    0    0    1    0    0  
E2 0    1    0    3    2    1    2    0    0    0  
E3 1    0    2    0    1    1    0    3    1    1  
E4 0    1    0    1    1    0    1    1    0    0     
H1 0    0    2    0    1    2    0    0    2    0  
H2 1    0    2    2    0    2    2    0    0    0  
H3 0    0    1    1    2    1    1    0    2    0  
H4 

 0    0    1    0    0    2    2    0    2    0 
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The user may wish to retrieve all the articles on the subject of households, but 
they are subjected to inquire by using the listed keywords only. For example, 
query “fuel” will retrieve all four of the household related articles, and, in fact 
more than that – E1 and  E3 will show up too; query “tax” will get four items, 
three -  H1, H3, and H4 – on the subjects of household and one – E3 – on the sub-
ject of entertainment. No combination of these two can improve the result. 

  
This is very much a class description problem; just the decision rules, the que-

ries, must be combinations of keywords. The error of such a query is characterized 
by two characteristics, precision and recall. For example, “fuel” query’s precision 
is 4/6=2/3 since only four of six are relevant and recall is 1 because all of the rele-
vant documents have been returned. Similarly, “tax” query both precision and re-
call are ¾ (see section 3.2.3 for definitions).   

 
The rigidity of the query format does not fit well into the polysemy of natural 

language – such words as “fuel” or “play” have more than one meanings – thus 
leading to impossibility of exact information retrieval in many cases. 

 
The method of latent semantic indexing (LSI) utilizes the SVD decomposition 

of the document-to-term data to soften and thus improve the query system by em-
bedding both documents and terms into a subspace of singular vectors of the data 
matrix.  

 
Before proceeding to SVD, the data table sometimes is pre-processed, typi-

cally, with what is referred to Term-Frequency-Inverse-Document-Frequency (tf-
idf) normalization. This procedure gives a different weight  to any keyword ac-
cording to the number of documents it occurs at (document frequency df). The in-
tuition is that the greater the document frequency, the more common and thus less 
informative is the word. The idf weighting assigns each keyword with a weight 
inversely proportional to the logarithm of its document frequency. The tf value is 
that of the corresponding entry referring to the frequency of the occurrence of the 
column word in the row document. For Table 4.15, these weights are in its last 
line. 

 
After the SVD of the data matrix is obtained, the documents are considered 

points of the subspace of a few first singular vectors. The dimension of the space 
is not very important here, though it still should be much smaller than the original 
dimension. Good practical results have been reported at the dimension of about 
100-200 when the number of documents in tens and hundred thousands and the 
number of keywords in thousands. A query is also represented as a point in the 
same space. The principal components, in general, are considered as “orthogonal” 
concepts underlying the meaning of terms. This however, should not be taken too 
literally as the singular vectors can be quite difficult to interpret. Also, the repre-
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sentation of documents and queries as points in a Euclidean space is referred to 
sometimes as the vector space model in information retrieval. 

 
The Euclidean space format allows to measure similarity between items using 

the inner product or even what is called cosine  - the inner product between rows 
that have been pre-normalized. Then a query would return the set of documents 
whose similarity to the query point is greater than a threshold. This tool may pro-
vide for a better resolution in the problem of information retrieval, because it well 
separates different meanings of synonyms. 

 
This can be illustrated with the example of data in Table 4.15: the left part of 

Fig. 4.14 corresponds to the original term frequency codes and the right part to the 
data weighted using tf-idf coding. 
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Figure 4.14. Two first principal components plane for data in Table 4.15, both 

in the original format (left) and after tf-idf normalization (right). Query Q combin-
ing fuel-price- relief-tax keywords corresponds to the pentagram. 

 
As one can see, both representations separate the three subjects, F, E and H, 

more or less similarly, and provide the query Q combining four keywords, fuel, 
price, relief, and tax, that are relevant to Household, with a rather good resolution. 
This query corresponds to an additional row in the data table – the row that has all 
components zero except for those four corresponding to the keywords – they are 
equal to unity. Then this supplementary “entity” is pre-processed exactly as the 
data table, and its PCA components are computed by using corresponding loading 
vectors (see Table 4.16 further on). Taking into account the position of the origin 
of the concept space – the circle in the middle of the right boundary, the four H 
items are indeed have very good angular similarity to the pentagram representing 
the query Q.  

 
Table 4.16 contains data that are necessary for computing coordinates of the 

query Q in the concept space: the first coordinate is computed by summing up all 
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the components of the first left singular vector and dividing the result by the 
square root of the first singular value: u1=(-0.34-0.42-0.29-0.24)/8.6½   = -0.44. 
The second coordinate is computed similarly from the second singular vector and 
value: x2=(-0.25-0.22-0.35-0.33)/ 5.3½ = - 0.48. These correspond to the penta-
gram on the left part of Figure 4.17. 

 
Table 4.16.  Two first singular vectors of term frequency data in Table 4.15 
 
Order SV Contrib,%   Left singular vectors normed 
1st comp. 8.6 46.9 -0.25  -0.19  -0.34  -0.40  -0.39  -0.42 -0.29  -0.32  -0.24  -0.22 
2d comp. 5.3 17.8  0.22   0.34   -0.25  -0.07   0.01  -0.22 -0.35   0.48  -0.33   0.51 
Query                                            0        0        1        0         0        1        1        0        1        0 

 
The SVD representation of documents is also utilized in other applications such 

as text mining, web search, text categorization, software engineering, etc. 

F4.3 Latent semantic analysis: Formulation. 

The full SVD of data matrix F leads to equation F=ZMCT where Z and C are 
matrices whose columns are right and left normed singular vectors of F and M is a 
diagonal matrix with the corresponding singular values of F on the diagonal. By 
leaving only K columns in these matrices, we substitute matrix F by matrix FK= 
ZKMKCK

T so that the entities are represented in the K-dimensional concept space 
by the rows of matrix  ZKMK

½.  
 
To translate a query presented as a vector q in the V-dimensional space into the 

corresponding point u in the K-dimensional concept space, one needs to take the 
product g=CK

Tq, which is equal to g=zMK
½ according to the definition of singular 

values, after which z is found as z=gMK
−½. Specifically, k-th coordinate of vector z 

is calculated as zk=<ck,q>/μk
½ (k=1, 2, …, K).  

 
The similarities between rows (documents), corresponding to row-to-row inner 

products in the concept space are computed as ZKMK
2ZK

T and, similarly, the 
similarities between columns (keywords) are computed according to the dual 
formula CKMK

2CK
T.  Applying this to the case of the K-dimensional point z 

representing the original V-dimensional vector q, its similarities to N original 
entities are co 2 Tmputed as zMK ZK . 
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C4.3 Latent semantic analysis: Computation 

Let X be N×V array representing the original frequency data. To convert that to 
the conventional coding, in which all the entries larger than 1 are coded by 2, one 
can use this operation: 

 
>> Y=min(X,2*ones(N,V)); 
 
Computing vector df of document frequencies over matrix Y can be done with 

this line: 
>>df=zeros(1,V); for k=1:V;df(k)=length(find(Y(:,k)>0));end; 
 
and converting df to the inverse-document-frequency weights, with this: 
 
>> idf=log(N./df); 
 
After that, it-idf normalization can be made by using command 
 
>>YI=Y.*repmat(idf, N,1); 
 
Given term frequency matrix Y, its K-dimensional concept space is created with 

commands: 
  
>> [z,m,c]=svd(Y); 
>>zK=z(:, [1:K]); cK=c(:, [1:K]); mK=m([1:K], [1:K]); 
 
Worked example 4.10. Drawing Figure 4.17 
 
Consider that z is the matrix of normed paper score singular vectors, c the matrix of 

normed keyword loading vectors, and m the matrix of singular values of the data in Table 
4.15 as they are. 

  
To draw the left part of Figure 4.17, one can define the coordinates with vectors z1 and 

z2: 
>> z1=z(:,1)*sqrt(m(1,1)); %first coordinates of N entities in the concept space 
>> z2=z(:,2)*sqrt(m(2,2)); %second coordinates of N entities in the concept space 
 
Then prepare the query vector and its translation to the concept space: 
>> q=[0 0 1 0 0 1 1 0 1 0]; % “fuel, price, relief, tax” query vector 
>> d1=q*c(:,1)/sqrt(m(1,1)); %first coordinate of query q in the concept space 
>> d2=q*c(:,2)/sqrt(m(2,2)); %second coordinate of query q in the concept space 
 
After this, an auxiliary text data should be put according to MatLab requirements: 
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>> tt={‘E1’,’E2’, …, ‘H4’}; % cell of names of the items in data matrix 
>>ll=[0:.04:1.5]; zd1=d1*ll;zd2=d2*ll;  
% pair zd1, zd2 will draw a line through origin and point (d1,d2) 
 
Now we are ready for plotting the left drawing in Figure 4.17: 
 
>> subplot(1,2,1); 
>> plot(u1,u2,'k.',d1,d2,'kp',0,0,’ko’,ud1,ud2);text(u1,u2,tt); 
>> text(d1,d2,' Q'); 
>> axis([-1.5 0 -1 1.2]); 
 
The arguments of plot command here are:  
u1,u2,'k.' – black dots corresponding to the original entities; 
d1,d2,'kp' – black pentagram corresponding to query q; 
0,0,’ko’ – black circle corresponding to the space origin; 
ud1,ud2 – line through the query and the origin. 
Command text provides for string labels at corresponding points. Command axis speci-

fies the boundaries of the Cartesian plane box on the figure, which can be used for making 
different plot boxes uniform. 

 
The plot on the right of Figure 4.17 is coded similarly by using SVD of tf-idf matrix YI 

rather than Y. 

4.4 Application: Correspondence analysis 

P4.4 Correspondence analysis: Presentation 

Correspondence Analysis is an extension of PCA to contingency tables taking 
into account the specifics of co-occurrence data: they are not only comparable 
across the table but also can be meaningfully summed up across the table. This 
leads to a unique way of standardization of such data – by using the Quetelet coef-
ficients rather than the original frequencies, which is an advantage over the com-
mon situations in which the data standardization is rather arbitrary.  

 
Correspondence Analysis (CA) is a method for visually displaying both row 

and column categories of a contingency table P=(pij), i∈I, j∈J, in such a way that 
distances between the presenting points reflect the patterns of co-occurrences in P. 
This method is usually introduced as a set of dual heuristics applied simultane-
ously to rows and columns of the contingency table (see, for example, Lebart, 
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Morineau and Piron 1995). Yet there is a way for introducing CA as a decoder 
based data recovery technique similar to that used for introducing PCA above. 
According to this perspective (Mirkin 1996), CA is a version of PCA differing 
from PCA, due to the specifics of contingency data, in the following aspects: 

 
(i) CA decoder applies to the relative Quetelet coefficients rather than to the 

original frequencies; 
 
(ii) Both rows and columns are assigned with weights equal to the marginal 

frequencies – these weights are used in the least-squares criterion as well as the or-
thogonality conditions; 

 
(iii) Both rows and columns are visualized on the same display in such a way 

that the geometric distances between the representing them points reflect the so-
called chi-square distances between row and column conditional frequency pro-
files (see (4.23) in the formulation part later); 

 
(iv) The data scatter is measured by the Pearson chi-square association coeffi-

cient rather than just the sum of squares of Quetelet coefficients. 
 
Worked example 4.11. Correspondence analysis of Protocol/Attack contin-

gency table 
 
Consider Table 4.17, a copy of Table 2.6 representing the distribution of protocol types 

and attack types according to Intrusion data: totals on its margins show summary distribu-
tions of protocols and attacks separately. 

Table 4.17. Protocol/Attack contingency table for Intrusion data. 
 

Category Apache Saint Smurf Norm Total 
Tcp 23 11 0 30 64 
Udp 0 0 0 26 26 
Icmp 0 0 10 0 10 
Total 23 11 10 56 100 

 
To apply the method to data in Table 4.17, we first standardize it into Quetelet coeffi-

cients (see Table 4.18).  
 
Table 4.18. Quetelet indices,  per cent, for the Protocol/Attack contingency Table 4.17. 

 Category Apache Saint Smurf Norm 
 Tcp -100.00 -16.29 56.25 56.25 
 Udp -100.00 -100.00 -100.00 78.57 
 

Icmp -100.00 -100.00 -100.00 900.00  
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This standardization does make the data structure somewhat sharper, as has been ex-
plained in section 2.3. One can see, for example, that q=9 (=900%) for the equivalent pair 
(Icmp, surf). But the transformation p⇒q does not work alone in CA; it is coupled with the 
weighting of each row and column by its corresponding marginal probability so that the 
squared errors in the criterion are weighted by products of the marginal probabilities. 
Moreover, the vector norm is weighted by them too. 

 
Figure 4.15 represents a CA visualization of Table 4.17 derived as described in section 

C4.4, which shows indeed that the equivalent Smurf and Icmp fall in the same place; Norm 
is much associated to Udp, and Apache and Saint are between Tcp and Icmp protocols. The 
Norm category slightly falls out: all points representing columns should be within the con-
vex closure of the three protocol points.    

F4.4 Correspondence Analysis: Formulation 

Correspondence Analysis (CA) is a method for visually displaying both row 
and column categories of a contingency table P=(p ), i∈I, j∈J, in such a way that ij
distances between the presenting points reflect the pattern of co-occurrences in P. 
To be specific, let us take on the issue of visualization of P on a 2D plane so that 
we are looking for just two approximating factors, u1=(v1, w ) where v1 1=(v1(i)) 
and  w1=(w1(j)) and u2=(v2, w ) where v2 2=(v2 (i)) and w2=(w2(j)), with I∪J as their 
domain, such that each row i∈I is displayed as point u(i)=(v1(i), v (i)) and each 2

column j∈J as point u(j)=(w (j), w1 2(j)) on the plane as shown in Figure 4.15. 
 
The |I|-dimensional vectors vt and |J|-dimensional vectors wt constituting ut 

(t=1, 2) are calculated to approximate the relative Quetelet coefficients 
qij=pij/(pi+p ) – 1 rather than the co-occurences p+j ij themselves, according to equa-
tions:  

 
qij =μ1v1(i)w1(j)+ μ2v2(i)w2(j) + eij   (4.20) 

 
where μ1 and μ2 are positive reals, by minimizing the weighted least-squares crite-
rion  

 
E2=Σi∈IΣj∈J pi+p+jeij

2    (4.21)  
 

with regard to μt, vt, wt, subject to conditions of weighted orthonormality: 

Σi∈I pi+vt(i)vt’(i) = Σj∈J p+jwt(j)wt’(j) ={     (4.22) 
1, if t=t′ 
0, other-

  
where t, t′ =1, 2. 
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The weighted criterion E2 is equivalent to the unweighted least-squares crite-
rion L2 applied to the matrix R that has Pearson indexes rij= qij(pi+p )½ =(p+j ij − 
pi+p+j)/(pi+p ) ½ as its entries. This implies that the factors v and w are determined +j
by the singular-value decomposition of matrix R=(r ). More explicitly, the two ij

maximal singular values μt and corresponding singular vectors ft =(fit) and  gt =(gjt) 
of matrix R, defined by equations Rgt=μtft, RTft=μtgt (t=1, 2) determine the opti-
mal values μt and optimal solutions to the problem of minimization of (4.21)–
(4.22). Indeed, these singular triplets relate to the optimal solution according to 
equations vt(i)=fit/(pi+

½ ½) and wt(j)=gjt/(p ).  The proof follows from the first-+j
order optimality conditions for the Lagrange function of the problem (4.21)–
(4.22). 

−0.6 −0.4 −0.2 0 0.2 0.4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

TCP

UDP

ICMP

Apache

Saint Smurf

Norm

    
Figure 4.15. Visualization of Protocol/Attack contingency data in Table 4.15 

using Correspondence Analysis. Squares stand for protocol types and stars for at-
tack categories. 

 
The singular triplet equations can be rewritten in terms of vt and wt, as follows:  
 

( ) ( ), ( ) ( )ij ij
t t t t t t

j J i Ii j

p p
w j v i v i w j

p p
μ

∈ ∈+ +

=∑ ∑            μ=   (4.23) 

To prove the left-hand equation, take equation Rgt=μtf  in its component-wise t

ij j ij J
r g fμ

∈
=∑  (index t omitted for convenience) and substitute by vectors form, 

1/2( ) ( ) ( )j

i

p
ij pj J

r w j vμ+

+∈
=∑ iv and w defined above: . This is equivalent to 

( ) ( ) ( )ij

i

p
jpj J

p w j v iμ
+ +∈

− =∑ . To complete the proof, equation Σjp w(j)=0 is to +j

1/2be proven. To do that, let us first prove that vector g0 whose components are p  +j
is a singular vector of R corresponding to singular value 0 (the other singular vec-
tor is equal to f0=(pi+

1/2)). Indeed,  1/2
ij jj J

r p+∈
=∑  
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1/2 1/2(1/ ) ( ) (1/ )( ) 0.i ij i j i i ij J
p p p p p p p+ + + + +∈

− = − =∑ +  Then the equation 

Σjp w(j)=0 follows from the fact that all the singular vectors are mutually or-+j

thogonal so that singular vector g corresponding to w is orthogonal to g0, which 
proves the statement. The right-hand equation can be proven in a similar way, 
from equation RTft=μtgt. 

 
Equations (4.23) are referred to as transition equations and considered to justify 

the joint display of rows and columns because the row-points vt(i) appear to be av-
eraged column-points wt(j) and, vice versa, the column-points appear to be aver-
aged versions of the row-points, up to the singular value of μt course.  

 
The mutual location of the row-points is considered as justified by the fact that 

between-row-point squared Euclidean distances d2(u(i), u(i')) approximate the chi-
square distances between corresponding rows of the contingency table. Specifi-
cally, chi-square distance is defined as  

 
χ2(i,i')= Σj∈J p+j(qij-qi’j)2 = Σj∈J(pij/pi+ - pi’j /p )2/p .  (4.24) i′+ +j

 
Here u(i)=(v (i), v1 2(i)) for v1 and v2 rescaled in such a way that their norms are 

equal to μ and μ1 2, respectively. A similar property holds for columns j, j′. In fact, 
it is the right-hand item in (4.24) which is used to define the chi-squared distance 
(Lebart et al. 1995), but the definition in terms of Quetelet coefficients in the mid-
dle of (4.24) (Mirkin 1996) looks more natural. The distance is dubbed chi-square 
distance because of its links to the chi-square coefficient for table P. First of all if 
we take the weighted chi-square summary distance to 0, Σi∈I pi+χ2(i,0) where 0 is 
put instead of qi’j in (4.24), it is easy to see that this is the Pearson chi-squared co-
efficient, without the factor N of course, which is simultaneously the expression 
for the data scatter according to criterion E2 in (4.21): 

 
             Σi∈I pi+χ2(i,0)= Σi∈IΣj∈J pi+p+jeij

2 =X2/N  (4.25)  
 
The weighted data scatter is equal to the scatter of R, the sum of its squared en-

tries T(R), which can be easily calculated from the definition of R. Indeed, T(R)= 
Σi∈IΣj∈J(pij - pi+p+j) 2 2/(pi+p ) = X /N.+j  This implies that 

 
 X2/N=μ1

2 +μ 2 + E2       (4.26) 2
 

which can be seen as a decomposition of the contingency data scatter, expressed 
by X2, into contributions of the individual factors, μ1

2 and μ2
2, and unexplained re-

siduals, E2. (Only two factors are considered here, but the number of factors to be 
found can be raised up to the rank of matrix R with no change). 
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In a common situation, the first two singular values account for a major part of 
X2, thus justifying the use of the plane of the first two factors for visualization of 
the interrelations between I and J.  

C4.4 Correspondence Analysis: Computation 

Given a contingency table P, the computation of correspondence analysis fac-
tors can go in three steps: (a) computing Pearson index matrix R, (b) finding the 
singular decomposition of R and the two first correspondence analysis factors, and 
(c) visualization of the joint display of rows and columns of P. Here are MatLab 
commands for these. 

 
(a) Computing Pearson index matrix R 
>> Pc=sum(P); Pr=sum(P'); total=sum(Pc); 
>> P=P/total; %relative frequencies 
>> Pc=Pc/total; %column relative frequencies 
>> Pr=Pr/total; %row relative frequencies 
>> Prod=Pr'*Pc; % matrix of products 
>> rProd=Prod.^(0.5); % square roots of products 
>> r=(P-Prod)./rProd; % Pearson index matrix 
 
(b) Finding the correspondence analysis factors: 
 
>> [a,mu,b]=svd(r); 
>> % finding first factor 
>> x1=(a(:,1).*sqrt(Pr'))*sqrt(mu(1,1));  
>> y1=(b(:,1).*sqrt(Pc'))*sqrt(mu(1,1)); 
>> % finding second factor 
>> x2=(a(:,2).*sqrt(Pr'))*sqrt(mu(2,2)); 
>> y2=(b(:,2).*sqrt(Pc'))*sqrt(mu(2,2)); 
 
As a bonus, one can estimate the proportion of data scatter, the chi-squared, 

taken into account by the factors, and display it on the screen: 
 
>> yy=r.*r; chi=sum(sum(yy))% data scatter 
>> ccn=(mu(1,1)^2+mu(2,2)^2)*100/chi; 
   %contribution of the first two  
>> disp('Contribution of the solution:'); ccn 
 
(c) Visualization of the joint display of rows and columns of P.  The plot is 

easy to do with command 
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>> plot(x1,x2,'ks', y1,y2,'kp'); 
 
Yet to make the points annotated with row and column names, which are to be 

available in a string cell termed say ‘names’, the joint set of rows and columns 
should get their x-coordinate and y-coordinate vectors, z1 and z2 below: 

 
>> z1=[x1' y1']; z2=[x2' y2']; text(z1,z2,names); 
>> v=axis; axis(1.5*v);  
 
The last line is to make the picture to look tighter by extending its boundaries. 
 

Q.4.13. Why is (a) the first singular vector all positive and (b) the second singular 
vector half negative? A. (a) All features are positively correlated; (b) the second 
must be orthogonal to the first. 

 
Q. 4.14. For the data in Table 4.10, as well as many others,  svd function in Mat-
lab produces first singular vectors z and c negative, which contradicts the meaning 
of them as talent scores and subject loadings. Can anything be done about that? A. 
Yes, they can be changed to –z and –c without compromising their singular vector 
status. 

 
Q. 4.15. Is matrix   

                     1 2 
                     2 1  

of rank 1 or not? A. The rows are not proportional to each other, thus not. 
 
Q.4.16. Prove that if matrix Y is symmetric then its eigenvalues and vectors 

(λ,z) are simultaneously its singular triplets (λ, z, z). 
 
Q.4.17. Find a matrix of rank 1 that is the nearest to matrix in Q.4.15 according 

to the least-squares criterion. A. The solution is given by the first singular value 
and corresponding singular vectors which are the same as the first eigenvalue and 
and corresponding eigen-vector, λ=3 and z=(1/√2, 1/√2), thus leading to matrix 

3/2  3/2 
3/2  3/2   

as the solution.  
 
Q.4.18. For positive a and b, inequality a<b can be equivalently expressed as 

a/b<1. The difference between a and b does not change if c>0 is added to both of 
them, but the ratio does. Prove that for any c>0, (a+c)/(b+c)>a/b – this would il-
lustrate that the further away the positive data are from zero, the greater the con-
tribution of the first principal component. 
Q.4.19. There is another representation of a singular value problem as an eigen-
value problem. Given a square N×V matrix Y, consider a (N+V)×(N+V) matrix Y* 
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that consists of four blocks, two of which, the diagonal N×N and V×V blocks, are 
all zeros: 

                                                  . * 0
0T

Y
Y

Y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Prove that a triplet (μ, z, c) is singular for Y if and only if μ is eigenvalue for Y* 
corresponding to eigenvector y=(z,c) in which first N components are taken by z 
and the remaining V components, by c. A. Consider an arbitrary eigenvalue μ and 
corresponding eigenvector y of matrix Y* and denote the vector of its first N com-
ponent by z, and the rest by c so that y=(z,c). The product  Y*y will have its first N 
components equal to 0z+Yc=Yc and the next V components equal to YTz+0c=YTz. 
Since Y*y=μy, that means that Yc=μz and YTz=μc, which proves the statement. 

 
Q.4.20. Prove that if an eigenvector y=(z,c) of Y* is normed, then its components z 
and c both have norms of 0.51/2 2. A. Indeed, ||y|| = ||z||2 2 +||c|| because these are just 
sums of the squared components. On the other hand, as proven in Q.4.20, z and c 
are singular vectors of Y so that they must have equal norms because of Property 1 
in section F4.2. This leads to equation ||z||2 2=||c|| =1/2, which proves the statement. 

 
Q.4.21. Prove that if μ is an eigenvalue of Y* corresponding to its eigenvector 
y=(z,c) then so is its negation -μ corresponding to eigenvector y=(-z,c). A. Indeed, 
equations Yc=μz and YTz=μc hold if and only if Yc=(-μ)(-z) and Y(-z)=(-μ)c.  

4.5  Summary 

This Chapter introduces the concept of data summarization as a coder-decoder 
pair and describes the method of principal components (PCA) as a data-driven 
model in this framework. Luckily, this model is underlied with a well developed 
mathematical theory of singular value decomposition (SVD) for rectangular ma-
trices. Unlike the conventional formulation of PCA, this model does not require to 
postulate that the principal components are to be linear combinations of features. 
This property is derived from the model. Yet the PCA model itself is rather sim-
plistic and suggests that further thinking on better data summarization models 
should be undertaken.  

 
Three applications of PCA – scoring hidden factors, data visualization, and fea-

ture space reduction are illustrated with further instructions and worked examples. 
Two more distant applications, Latent semantic analysis (for disambiguation in 
document retrieval) and Correspondence analysis (for visualization of contingency 
tables), are explained in full, too. 
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Abstract    

K-Means is arguably the most popular data analysis method. The method out-
puts a partition of the entity set into clusters and centroids representing them. It is 
very intuitive and usually requires just a few pages to get presented. This text in-
cludes a number of less popular subjects that are important when using K-Means 
for real-world data analysis:  

• Data standardization, especially, at mixed scales 
• Innate tools for interpretation of clusters 
• Analysis of examples of K-Means working and failures 
• Initialization – the choice of  the number of clusters and location of cen-

troids       
 

Versions of K-Means such as incremental K-Means, nature inspired K-Means, and 
entity-centroid “medoid” methods are presented. Three modifications of K-Means 
onto different cluster structures are given:. Fuzzy K-Means for finding fuzzy clus-
ters, Expectation-Maximization (EM) for finding probabilistic clusters, and Koho-
nen self-organizing maps (SOM) that tie up the sought clusters to a visually com-
fortable two-dimensional grid.  

 
Equivalent reformulations of K-Means criterion are described – they can yield dif-
ferent algorithms for K-Means. One of these is explained at length: K-Means ex-
tends Principal component analysis to the case of binary scoring factors, which 
yields the so-called Anomalous cluster method, a key to an intelligent version of 
K-Means with automated choice of the number of clusters and their initialization. 
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5.0 General 

Clustering is a set of methods for finding and describing cohesive groups in 
data, typically, as “compact” clusters of entities in the feature space 

 
Consider data patterns on Figure 5.1: a clear-cut cluster structure on part (a), a 

blob on (b), and an ambiguous “cloud” on (c). 

(b) 
 
 
 
 (a) 
  
(d) (c) 
 

 
Figure 5.1. Clear-cut cluster structures at (a) and (c); data clouds with no clear 

structure at (b) and (d). 
 
Some argue that term “clustering” applies only to structures of the type pre-

sented on Figure 5.1 (a) and (c), moreover, depending on the resolution, one may 
distinguish 3 or 7 clusters on (c). Yet there are no “natural” clusters in the other 
two cases, Figure (b) and (d).  Indeed, initially the term was used to express a 
clear-cut clustering. But currently clustering has become synonymous to building 
a classification over empirical data, and as such it embraces all the situations in 
which data is structured into cohesive chunks.  

 
To serve as models of natural classes and categories, clusters need be not only 

found but conceptually described as well. A class always expresses a concept em-
bedded into a fragment of knowledge – this is what is referred to, in logics, as the 
class’ “intension”, in contrast to empirical instances of the class constituting what 
is referred to as the class’ “extension”, e.g., the concept of “tree” versus real plants 
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growing here and there.  Therefore, two dual intelligent activities – cluster finding 
and cluster describing – should be exercised both when clustering. 

 
As Figure 5.2 illustrates,  a cluster is rather easy to describe by combining cor-

responding feature intervals when it is clear-cut. This knowledge driven data 
analysis perspective can be reflected in dividing all cluster finding techniques in 
the following categories: 

 
(a) clusters are to be found directly in terms of features – this is referred to as 

conceptual clustering; 
(b) clusters are to be found simultaneously with a transformation of the feature 

space making them clear-cut – this direction only started very recently and is not 
well shaped yet; 

(c) clusters are to be found as subsets of entities first, so that the description 
comes as a follow-up stage – this is the genuine clustering activity which covers 
most of clustering activities so far.  

 
 
 
 
 
  
 
 
 
 
Figure 5.2. Cluster of blank circles on the right is well described by the predi-

cate a1<x<a2 & b1<y<b2. A similar cluster on the right cannot be accurately de-
scribed by interval predicates without false positive and false negative errors. 

5.1 K-Means clustering 

P.5.1.1 Batch K-Means partitioning 

K-Means is a major clustering technique, of type (c), that is present, in various 
forms, in all major statistical packages such as SPSS  and SAS, as well as data 
mining packages such as Clementine, iDA tool  and DBMiner. It is very popular 
in many application areas such as image analysis, marketing research, bioinfor-
matics, and medical informatics. 

b2 
 
b1 
            a1   a2       
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In general, the cluster finding process according to K-Means starts from K ten-

tative centroids and repeatedly applies two steps:  
(a) collecting clusters around centroids,  
(b) updating centroids as within cluster means, 
 – until convergence.  
This makes much sense – whichever centroids are suggested first, as hypotheti-

cal cluster tendencies, they are checked then against real data and moved to the ar-
eas of higher density. 

 
 
 
 
 

(a)                                             (b)  
 
 
 
 
 
 
 
 
Figure 5.3. Main steps of Batch K-Means: (a) initialization of centroids, (b) 

cluster updare using Minimum distance rule (the pointed lines show distances 
from an entity to all centroids), (c) cluster update completed, (d) centroid update 
completed. 

 
 
In its generic, so-called Batch mode, K-Means can be formulated as comprising 

the following steps 0-3 illustrated on Figure 5.3 for K=3: 
 
0. Initialization: the user chooses the number K of clusters and puts K hypo-

thetic cluster centroids among the entity points, see Figure 5.3 (a); 
 
1. Cluster update: Given K centroids ck, each of the entities i∈I is assigned to 

one of the centroids according to Minimum distance rule: distances between i and 
each ck are calculated, and i is assigned to the nearest ck, see Figure 5.3 (b). For 
each centroid ck, those entities assigned to it, form cluster Sk (k=1, 2, …, K) , see 
Figure 5.3 (c).  

 
2. Centroid update: Given K clusters Sk,  its gravity center is computed and set 

as the new centroid ck′ (k=1, 2, …, K) , see Figure 5.3 (d). 
 

 
              (c)                                                      (d) 
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3. Halting test: New centroids ck′ are compared with those from the previous 
iteration. If ck′= ck for all k=1, 2, …, K, stop and output both ck′ and Sk for all k=1, 
2, …, K. Otherwise, set ck′ as ck and go to 1. Cluster update step.  

 
The algorithm is appealing in several aspects. Conceptually it may be consid-

ered a model for the human process of typology making, with types represented by 
clusters Sk and centroids ck. Also, it has nice mathematical properties. This method 
is computationally easy, fast and memory-efficient. However, researchers and 
practitioners point to some less desirable properties of K-Means. Specifically, they 
refer to lack of advice with respect to  

(a) the initial setting, i.e. the number of clusters K and initial positioning of 
centroids,  

(b) instability of clustering results with respect to the initial setting and data 
standardization, and 

(c) insufficient interpretation aids.     
 
These issues can be alleviated, to an extent, as will be explained later in this 

section. 
 

 
Figure 5.4. The distances – intervals connecting centroids with entity points – 

in criterion W(S,c). 
 
A decoder based summarization model underlying the method is that the enti-

ties are assigned to clusters in such a way that each cluster is represented by its 
centroid, sometimes referred to as the cluster’s standard point or prototype. This 
point expresses, intensionally, the typical tendencies of the cluster. 

 
Worked example 5.1. K-Means clustering of Company data. 
 
Consider standardized Company data in Table 4.7 copied here as Table 5.1. 
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This data set can be visualized with two principal components as presented on Figure 5.5  
(copied from section  4.2.2).   

 
For example, let entities An, Br and Ci be suggested centroids of three clusters. Now we 

can computationally compare each of the entities with each of the centroids to decide which 
centroid better represents an entity. To compare two points, Euclidean squared distance is a 
natural choice (see Table 5.2). 

 
Table 5.1. The Company data standardized by: (i) shifting to the within-column aver-

ages, (ii) dividing by the within-column ranges, and (iii) further dividing the category based 
three columns by √3. Contributions of the features to the data scatter are presented in the 
bottom.  

-0.66   0.79   -1.00   -1.29   1.29   -0.77  -0.58 Ave 
 1.32   0.15    0      -1.29   1.29   -0.77  -0.58 Ant 
 0.28   0.32    0      -1.29  -0.77    1.29  -0.58 Ast 
-0.77  -0.51   -1.00    0.77   1.29   -0.77  -0.58 Bay 
 0.62  -0.98    0       0.77  -0.77    1.29  -0.58 Bre 
-1.97  -1.42   -1.00    0.77  -0.77    1.29  -0.58 Bum 
 0.28  -0.32    1.00    0.77  -0.77   -0.77   1.73 Civ 
 0.90   1.97    2.00    0.77  -0.77   -0.77   1.73 Cyb  
  8      8      8       8       8       8     8 Cnt 
 14.3  14.3    14.3    14.3   14.3    14.3  14.3 Cnt, % 

 
According to the Minimum distance rule, an entity is assigned to its nearest centroid 

(see Table 5.3 in which all distances between the entities and centroids are presented; those 
chosen according to the Minimum distance rule are highlighted in bold.) Entities assigned 
to the same centroid form a tentative cluster around it. Clusters found at Table 5.3 are  

 

Bayer

Break-

Bum-

Civok 

Cy-

Aversi

An-

Aston-

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5. Table 5.1 rows on the plane of two first principal components: it should not 

be difficult to discern clusters formed by products: distances within A, B and C groups are 
smaller than between them..  
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S1={Av,An,As}, S2={Ba,Br,Bu}, and S3={Ci,Cy}. These are the product classes already, 
but this is not enough to stop computation. K-Means procedure has its own logic that needs 
to ensure that the new tentative clusters lead to the same centroids. 

 
Table 5.2. Computation of squared Euclidean distance between rows Av and An in Ta-

ble 5.1 as the sum of squared differences between corresponding components. 

Points      Coordinates d(An,Av) 

  An  0.40   0.05   0.00   -0.63   0.36   -0.22   -0.14   

  Av -0.20   0.23  -0.33   -0.63   0.36   -0.22   -0.14    

An-Av  0.60  -0.18   0.33    0        0   0  0  

Squares  0.36   0. 03  0.11    0        0   0  0      0.50 

 
Table 5.3. Distances between three company entities chosen as centroids and all the 

companies; each company column shows three distances between the company and cen-
troids – the highlighted minima present best matches between centroids and companies. 

Point  Av     An     As     Ba     Br     Bu     Ci     Cy 

An 0.51  0.00   0.77  1.55  1.82  2.99  1.90  2.41 

Br 2.20  1.82   1.16  0.97  0.00  0.75  0.83  1.87 

Ci 2.30  1.90   1.81  1.22  0.83  1.68  0.00  0.61 

 
One needs to proceed further on and update centroids by using the information of the as-

signed clusters. New centroids are defined as centers of the tentative clusters, whose com-
ponents are the averages of the corresponding components within the clusters; these are 
presented in Table 5.4. 

 
The updated centroids differ from the previous ones. Thus we must update their cluster lists 
by using the distances between updated centroids and entities; the distances are presented in 
Table 5.5. As is easy to see, the Minimum distance rule assigns centroids again with the 



 256 

same entity lists. Therefore, the process has stabilized – if we repeat it all over again, noth-
ing new would ever come – the same centroids and the same assignments. The process 

 
Table 5.4. Tentative clusters from Table 5.3 and their centroids.  

-0.14  -0.22 0.36-0.63-0.33   0.23 -0.20 Av 
-0.14 -0.22 0.36-0.63 0   0.05  0.40 An 
-0.14  0.36-0.22-0.63 0   0.09  0.08 As 

Centroid1 0.10       0.12 -0.11 -0.63 0.17 -0.02 -0.14 

-0.14  -0.22 0.36 0.38-0.33 -0.15 -0.23 Ba 
-0.14  0.36-0.22 0.38 0  -0.29  0.19 Br 
-0.14   0.36-0.22 0.38-0.33 -0.42 -0.60 Bu 

Centroid2 -0.21 -0.29 -0.22  0.38 -0.02  0.17 -0.14 

Ci  0.08 -0.10  0.33  0.38 -0.22 -0.22  0.43 
Cy  0.27  0.58  0.67  0.38 -0.22 -0.22  0.43 

Centroid3 0.18 0.24 0.50 0.38 -0.22 -0.22 0.43 

 
stops at this point, and the found clusters along with their centroids are returned (see them, 
in the standardized format, in Table 5.4). 

 
Table 5.5. Distances between the three updated centroids and all the companies; the 

highlighted column minima present best matches between centroids and companies. 
 

Point  Av      An       As        Ba      Br       Bu       Ci      Cy 
0.22    0.19    0.31    1.31    1.49    2.12    1.76   2.36  Centroid1 
1.58    1.84    1.36    0.33    0.29    0.25    0.95   2.30 Centroid2 
2.50    2.00    1.95    1.69    1.20    2.40    0.15   0.15 Centroid3 

 
The result obviously depends on the standardization of the data performed beforehand, as 
the method heavily relies on the squared Euclidean distance and, thus, on the relative 
weighting of the features, just like PCA. 

 
Case study 5.1. Dependence of K-Means on initialization: a drawback and 
advantage 

 
The bad news is that the K-Means result depends on initialization – the choice of the ini-

tial tentative centroids, even if we know, or have guessed correctly, the number of clusters 
K. Indeed, if we start from wrong entities as the tentative centroids, the result can be rather 
disappointing.  

 
In some packages, such as SPSS, K first entities are taken as the initial centroids. Why 

not start from rows for Av, An and As then? Taking these three as the initial tentative cen-
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troids will stabilize the process at wrong clusters S1={Av, Ba}, S2={An}, and S3={As, Br, 
Bu, Ci, Cy} (See Q.5.5). But what else can be expected if all centroids are taken from the 
same cluster? 

 
However, even if centroids are taken from right clusters, this would not necessarily 

guarantee good results either. Start, for example, from Av, Ba and Ci (note, these produce 
different products!); the final result still will be rather disappointing – S1={Av,An,As}, 
S2={Ba, Bu}, and S3={Br, Ci, Cy} (see Q.5.6).  

 
Figure 5.6 illustrates the fact that such instability is not because of a specially designed 

example but rather an ordinary phenomenon. There are two clear-cut clusters on Figure 5.6, 
that can be thought of as uniformly distributed sets of points, and two different initializa-
tions, symmetric one on the (a) part and not symmetric one on (b) part. The Minimum dis-
tance rule at K=2 amounts to drawing a hyperplane that orthogonally cuts through the mid-
dle of line between the two centroids; the hyperplane is shown on Figure 5.6 as the line 
separating the centroids. In Figure 5.6, the case (a) presents initial centroids that are more 
or less symmetric so that the line through the middle separates the clusters indeed. In the 
case (b), initial centroids are highly asymmetric so that the separating line cuts through one 
of the clusters, thus distorting the position of the further centroids; the final separation still 
cuts through one of the clusters and, therefore, is utterly wrong. 

      

 

Initial Final

(a) Right 

  (b) Wrong 

Figure 5.6. Case of two clear-cut clusters and two different initializations: (a) and (b). 
Case (a) results in a correct separation of the clusters, case (b) not. 

 
There is one more property of K-Means clusters illustrated by Figure 5.6: they are con-

vex. Indeed, the Minimum Distance rule assigns each centroid with the intersection of half-
spaces formed by the orthogonal cutting hyperplanes. 
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Figure 5.7. An example of K-Means failure: Two clusterings at a four-point-set with K-

Means – that intuitive on the right and that counter-intuitive on the left, with red stars as 
centroids. 

 
Another example of non-optimality of K-Means is presented on Figure 5.7 which involves 
four points only. 

 
Yet non-optimality of K-Means can be of an advantage, too – in those cases when K-Means 
criterion leads to solutions that are counterintuitive such as those in which the fact that K-
Means favors equal cluster sizes brings unexpected results.  

 
Case study 5.2. Uniform clusters can be too costly 
 
Here is an example when the square-error clustering criterion leads to a solution which 

is at odds with intuition, however that cannot be reached because of the local nature of 
batch K-Means algorithm. 

 

A B C

Figure 5.8. Three sets of points subject to 2-Means clustering: which two will join to-
gether, A and B or B and C? 

 
Consider the case of Figure 5.8 that presents three sets of points, two consisting of big 

clumps of say 100 entities each, around points A and B, and a small one around point C, 
consisting say of just one entity located at that point. Assume that the distance between A 
and B is 2, and between B and C, 10. There can be only two 2-cluster partitions possible: 
(I) 200 of A and B entities together in one cluster while the second cluster consists of just 
one entity in C; (II) 100 A entities for one cluster while 101 entities in B and C for the 
other. The third partition, consisting of cluster B and cluster A+C, cannot be optimal be-
cause cluster A+C is more outstretched than a similar cluster B+C in (II).  

 
Let us compare the values of K-Means criterion using the squared Euclidean distance 

between entities and their centroids.  
In case (I), centroid of cluster A+B will be located in the middle of the interval 

between A and B, thus on the distance 1 from each, leading to the total squared Euclidean 
distance 200*1=200. Since cluster C contains just one entity, it adds 0 to the value of K-
Means criterion, which is 200 in this case.  
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In case (II), cluster B+C has centroid, which is the gravity center, between B and C dis-
tanced from B by d=10/101. Thus, the total value of K-Means criterion here is 100*d2 + 
(10-d)2 2.which is less than 100*(1/10)  + 102=101 because d<1/10 and 10-d<10. Cluster A 
contributes 0 because all 100 entities are located in A which is, therefore, the centroid of 
this cluster. 

Case (II) wins by a great margin: K-Means criterion, in this case, favors more equal dis-
tribution of entities between clusters in spite of the fact that case (I) is intuitive and case (II) 
is not: A and B are much closer together than B and C. 

Yet Batch K-means algorithm leads to non-optimal, but  intuitive, case (I) rather than 
optimal, but odd, case (II), if started from the distant points A and C as initial centroids. In-
deed, according to Minimal distance rule, all entities in B will join A, thus resulting in (I) 
clustering.  

   
Case study 5.3. Robustness of K-Means criterion with data normalization 
 
Let us generate two 2D clusters, of 100 and 200 elements. First cluster – a Gaussian 

spherical distribution with the mean in point (1,1) and the standard deviation 0.5. The sec-
ond cluster, of 200 elements, is uniformly randomly distributed in the rectangle of the 
length 40 and width 1, put over axis x either at 4 (Figure 5.9, on the left) or at 2 (Figure 5.9, 
on the right). K-Means criterion of course cannot separate these two if applied in the origi-
nal space; its criterion value will be minimized by dividing the set somewhere closer to one 
fourth of the strip of rectangular cluster so that the split parts have approximately 150 
points each.  

 
Yet after the data standardization, with the grand means subtracted and range-

normalized, the clusters on the left part of Figure 5.9 are perfectly separable with K-Means 
criterion, that does attain its minimum value, at K=2, on the cluster-based partition of the 
set. This holds with z-scoring, too.  
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Figure 5.9. A set of two differently shaped clusters, a circle and rectangle; the y-

coordinates of their centers are 1 (circle) and 5.5 (rectangle) on the left, and 1 and 3.5, on 
the right.  

 
This tendency changes, though, at a less structured case on the right of Figure 5.9. The 

best split indeed holds at about x=10 in this case. At a random sample, 32 points of the rec-
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tangular cluster join circular cluster in the optimal split. Curiously, the z-scoring standardi-
zation, in this case, works towards a better recovery of the structure so that the optimal 2-
cluster partition, at the same data sample, merges only 5 rectangular cluster elements into 
the circular cluster, thus splitting the rectangular cluster over a mark x=5.    

 
These results do not much change when we go to Gaussian similarities (affinity data) 

defined by formula 
2

( , )
2( , )

d x y
G x y e σ

−

=  where d(x,y) is the squared Euclidean dis-

tance between x and y if x≠y. and σ2 is equal to 10 at the original data and 0.5 at the stan-
dardized data, in the manner of spectral clustering (see section 7.2) and apply algorithm 
ADDI-S from section 7.3. 

F5.1.1 Batch K-Means and its criterion: Formulation 

F5.1.1.1 Batch K-Means as alternating minimization 

The cluster structure in K-Means is specified by a partition S of the entity set in 
K non-overlapping clusters, S={S1, S2, …, SK} represented by lists of entities Sk, 
and cluster centroids ck=(ck1, ck2, …, c ), k=1,2,…, K. kV

 
There is a model that can be thought of as that driving K-Means algorithm. Ac-

cording to this model, each entity, represented by the corresponding row of Y ma-
trix as yi=(yi1, yi2, …, y ), belongs to a cluster, say SiV k, and is equal, up to small re-
siduals, or errors, to the cluster’s centroid: 

 
yiv = ckv  + e for all i∈Siv   k and all v=1, 2, …, V     (5.1) 

 
Equations (5.1) define as simple a decoder as possible: whatever entity belongs 

to cluster Sk, its data point in the feature space is decoded as centroid ck.  
 
The problem is to find such a partition S={S1, S2, …, SK} and cluster centroids 

ck=(ck1, ck2, …, ckV), k=1,2,…, K, that minimize the square error of decoding   

2
kv

1

22 )c- ( iv
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K

k Si
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VvIi
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k

∑∑∑∑∑
∈= ∈∈∈

== (5.2) 

 
Criterion (5.2) can be equivalently reformulated in terms of the squared Euclid-

ean distances as the summary distance between entities and their cluster centroids 
(see (5.3)). 

(5.3) 
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This is because the distance referred to as squared Euclidean distance is defined,  
for any V-dimensional x=(xv) and y=(yv) as d(x,y)=(x1-y1) 2+(x2-y2) 2+ ...+ (xV-y ) 2 

V
so that the rightmost summation symbol in (5.2) leads to d(yi,ck) indeed. 

 
This criterion depends on two groups of variables, S and c, and thus can be 

minimized by the alternating minimization method which proceeds by repetitively 
applying the same minimization step: Given one group of variables, optimize cri-
terion over the other group, and so forth, until convergence. 
 
Specifically, given centroids c=(c1, c2, …, cK), find a partition S minimizing the 
summary distance (5.3). Obviously, to choose a partition S, one should choose, for 
each entity i∈I, one of K distances d(yi,c ), d(y1 i,c2), …, d(yi,cK). The choice to 
minimize (5.3) is according to the Minimum distance rule: for each i∈I, choose 
the minimum of d(yi,ck), k=1,…, V, that is, assign any entity to its nearest centroid.  
When there are several nearest centroids, the assignment is taken among them ar-
bitrarily. In general, some centroids may be assigned no entity at all with this rule. 

 
The other step in the alternating minimization would be minimizing (5.3) over c at 
a given S. The solution to this problem comes from the additive format of criterion 
(5.2) that provides for the independence of cluster centroid components from each 
other. As was indicated in section 1.2, it is the mean that minimizes the square er-
ror, and thus the within-cluster mean vectors minimize (5.3) over c at given S. 

 
Thus, starting from an initial set of centroids, c=(c1, c2, …, cK), the alternating 

minimization method for criterion (5.3) will consist of a series of repeated applica-
tions of two steps: (a) clusters update – find clusters S according to the Minimum 
distance rule, (b) centroids update – make centroids equal to within cluster mean 
vectors. The computation stops when new clusters coincide with those on the pre-
vious step. This is exactly the K-Means in its Batch mode.  

 
The convergence of the method follows from two facts: (i) at each step, crite-

rion (5.3) can only decrease, and (ii) the number of different partitions S is finite. 

F5.1.1.2  Various formulations of K-Means criterion 

Let us consider any Sk and define ck being within-cluster means (k=1,2,…, K) 
so that ckv=Σi∈Sk ykv /N  where Nk k is the number of entities in Sk. Multiply then each 
equation in (5.1’) by itself and sum up the resulting equations. The result will be 
the following equation:   

(5.4) 
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Three items in (5.4) come from multiplying the elements in (5.1’) by themselves. 
The remaining sum 2ΣvΣk c  ekvΣi∈Sk kv is zero because Σi∈Sk e  (y  - ckv =Σi∈Sk iv kv)= 
ckvNk - ckvNk =0. This proves (5.4). Note that the item on the left in (5.4) is just the 
data scatter T(Y), whereas the right-hand item is the least-squares criterion of K-
Means (5.2). Therefore, equation (5.4) can be reformulated as 

 
T(Y)=B(S,c)+W(S,c)    (5.5)  

 
where T(Y) is data scatter, W(S,c) the least-squares clustering criterion expressed 
as the summary within cluster distance (5.3) and B(S,c) is clustering’s contribution 
to the data scatter: 

 

                     (5.6) kkv
Vv

K

k
NccSB 2

1
),( ∑∑

∈=

=

Pythagorean equation (5.5) decomposes data scatter T(Y) in two parts: that one 
explained by the cluster structure (S,c), which is B(S,c), and the unexplained part 
which is W(S,c). The larger the explained part, the smaller the unexplained part, 
and the better the match between clustering (S,c) and data. Equation (5.5) is well 
known in the analysis of variance in statistics; items B(S,c) and W(S,c) are referred 
to in that other context as between-group and within-group variance. 

Criteria W(S,c) and B(S,c) admit different equivalent reformulations that could 
lead to different systems of neighborhoods and local algorithms for minimization 
of W(S,c) which may have been never attempted yet. Take, for example, the crite-
rion of maximization of clustering’s contribution to the data scatter (5.6). Since 
the sum of ckv

2 over v is but the squared Euclidean distance between 0 and ck , one 
has 

                  (5.7) 2

1 1
( , ) (0, )

K K

kv k k k
k v V k

B S c c N N d c
= ∈ =

= =∑ ∑ ∑   

 
The criterion on the right in formula (5.7) was first mentioned, under the name of 
“criterion of distant centers”, by Mirkin (1996, p. 292). To maximize the criterion 
on the right in formula (5.7), the clusters should be as far away from 0 as possible. 
This idea may lead to a “parallel” version of the Anomalous Pattern method de-
scribed later in section 5.1.5. 

 
Another expression of the cluster-explained part of the data scatter is   
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which can be derived from (5.6) by taking into account that the internal sum Σv 
ckv

2 in (5.6) is in fact the inner square <ck,ck> and substituting instead of one its 
expression as within cluster average <ck,ck> = <ck, Σ  yi∈Sk kv/Nk>=Σ <ci∈Sk k,ck>/Nk. 
This expression shows that the K-Means criterion of minimizing within-cluster 
distances to centroids is equivalent to criterion of maximizing within-cluster inner 
products with centroids – they sum up to the data scatter which does not depend 
on the clustering. Note that the distance based criterion makes sense at any set of 
centroids whereas the inner product based criterion makes sense only when cen-
troids are within-cluster averages. As is well known, the distance does not depend 
on the location of the space origin whereas the inner product heavily depends on 
that – only special arrangements are suitable for the latter. 
 
In this regard, it deserves to be mentioned that W(S,c) can be reformulated in 
terms of entity-to-entity distances or similarities only – without any reference to 
centroids at all. One can prove that minimization of K-Means criterion is equiva-
lent to minimization of D(S) or maximization of C(S) defined by 

kjSji i

K

k

NyydSD
k

/),()(
,

1
∑∑ ∈

=

=                                      (5.9)                                 

                                                 (5.10) kSji ij

K

k

NaSC
k

/)(
,

1
∑∑ ∈

=

=

where d(yi,yj) is the squared Euclidean distance between i and j’s rows and 
aij=<yi,yj> is the inner product of them. Both follow from the expression 
d(yi,yj)=<yi –yj, yi –yj>=<yi,yi> + <yj,yj> – 2<yi,yj> and the definition of the cen-
troid of S  yk as Σi∈Sk i/Nk. These formulations suggest algorithms for optimization 
based on exchanges and mergers between clusters. 
 
A most unusual reformulation can be stated as a criterion of consensus among the 
features. Consider a measure of association ζ(S,v) between a partition S of the en-
tity set I and a feature v, v=1, 2, …, V. Consider, for the sake of simplicity, that all 
features are quantitative and have been standardized by z-scoring, then ζ(S,v) is 
the correlation ratio η2 defined by formula (2.10). Then maximizing the summary 
association 
 
                                ζ(S) =Σv∈V η2(S,v)                                                (5.11) 
 
is equivalent to minimization of the K-Means least squares criterion W(S,c) in-
volving the squared Euclidean distances. A very similar equivalent consensus cri-
terion can be formulated for the case when feature set consists of categorical or 
even mixed scale features. For the case of all features being categorical so that the 
categories are represented by dummy variables the total contribution to the data 
scatter in (5.4) can be formulated as  
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                                 ϕ(S) =Σv∈V ϕ(S,v)                                                (5.11′) 
 
where ϕ(S,v) can be an association measure such as Pearson chi-squared or Gini 
index – see more detail in section 3.5.2. 
 

Since clusters are not overlapping, model in (5.1) can be rewritten differently in 
such a way that no explicit references are made over individual clusters. To do 
that, let us introduce N-dimensional membership vectors zk=(zik) such that zik =1 if 
i∈Sk and =0, otherwise. Using this denotation allows us use the following refor-
mulation of the model. For any data entry, the following equation holds: 
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ivikkv
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(5.12) 

 
Indeed, since any entity i∈I belongs to one and only one cluster Sk, only one of zi1, 
zi2,…, ziK can be non-zero, that is, equal to 1, at any given i, which makes (5.12) 
equivalent to (5.1). 

 
Yet (5.12) makes the clustering model similar to that of PCA in (4.14) except that 
zik in PCA are arbitrary values to score hidden factors, whereas in (5.12) zik are to 
be 1/0 binary values: it is clusters, not factors, that are of concern here. That is, 
clusters in model (5.12) correspond to factors in model (4.14). 

 
The decomposition (5.4) of data scatter into explained and unexplained parts is 

similar to that in (4.17) making the contributions of individual clusters 

akin to contributions μ 2
kkv

Vv
Nc 2∑

∈

k  of individual principal components. More 

precisely, μk
2 T in (4.17) are eigen-values of YY , that can be expressed thus with the 

analogous formula,     
 
                           μk

2 = zk
T TYY zk/zk

Tzk =Σv ckv
2|Sk|                  (5.13) 

 
in which the latter equation is due to the fact that vector zk here consists of binary 
1/0 entries.   

 
Q.5.1. How many distances are summed up in W(S, c)? (A: This is equal to the 
number of entities N.) Does this number depend on the number of clusters K? (A: 
No.) Does the latter imply: the greater the K, the less the W(S, c)? (A: Yes.) Why?  

 
Q.5.2.What is the difference between PCA model (4.14) and clustering model 
(5.12)? 
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Q.5.3. Why is convergence guaranteed for K-Means? A. Because K-Means is al-
ternating minimization process at which criterion W(S,c) may only decrease at 
each step. Convergence follows from the fact that there are only a finite number of 
different partitions on I. 

 
Q.5.4. Assume that d(yi, ck) in W(S, c) is city-block distance rather than Euclidean 
squared. Could K-Means be adjusted to make it alternating minimization algo-
rithm for the modified W(S,c)? A: Yes, just use the city-block distance through, as 
well as within cluster median points rather than gravity centers.) Would this make 
any difference? (Yes, it will; especially at skewed distributions of the variables.) 

 
Q.5.5. Demonstrate that, at Companies data, value W(S,c) at product-based parti-
tion {1-2-3, 4-5-6, 7-8} is lower than at partition {1-4-6, 2, 3-5-7-8} found at 
seeds 1, 2 and 3. A. Indeed the sums of within-cluster distances to cluster cen-
troids in the product based clusters are 0.7193, 0.8701, 0.3070, respectively, total-
ing to 1.8964, whereas the sums ot the second partition are 1.4411, 0,  2.1789 and 
sum up to 3.62. 

 
Q.5.6. Demonstrate that, at Companies data, value W(S,c) at product-based parti-
tion {1-2-3, 4-5-6, 7-8} is lower than at partition {1-2-3, 4-6, 5-7-8} found at 
seeds 1, 4 and 7. A. Indeed the sums of within-cluster distances to cluster cen-
troids in the product based clusters are 0.7193, 0.8701, 0.3070, respectively, total-
ing to 1.8964, whereas the sums ot the second partition are 0.7193, 0.4413, 1.1020 
that total to 2.2626. 

 
Q.5.7. Can example of Figure 5.6 or its modification lead to a similar effect for 
the case of least-modules criterion related to the city-block distance and median 
rather than average centroids? Can it be further extended to PAM method which 
uses city-block distance and median entities rather than coordinates? 

 
Q.5.8. Formulate a version of K-Means to alternatingly maximize criterion (5.8) 
rather than to minimize (5.3) as the generic version. 

 
Q.5.9. Formulate a version of K-Means to alternatingly maximize criterion (5.7) 
rather than to minimize (5.3) as the generic version (a “parallel” version of the 
Anomalous Pattern method). Take care of starting from a most distant set of cen-
troids. 

C5.1.1 A pseudo-code for Batch K-Means: Computation 

To summarize, an application of K-Means clustering involves the following 
steps: 
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0. Select a data set. 
1. Standardize the data. 
2. Choose number of clusters K. 
3. Define K hypothetical centroids (seeds). 
4. Clusters update: Assign entities to the centroids according to Minimum dis-

tance rule. 
5. Centroids update: define centroids as the gravity centers of  thus obtained 

clusters. 
6. Iterate 4. and 5. until convergence. 
 
MatLab codes for the items 4 and 5 can be written as follows. 
 
4. Clusters update: Assign points to the centroids according to Minimum dis-

tance rule: 
Given data matrix X and a KxV array of centroids cent, produce an N-

dimensional array of cluster labels for the entities and the summary within cluster 
distance to centroids, wc: 
  

function [labelc,wc]=clusterupdate(X,cent) 
        [K,m]=size(cent); 
        [N,m]=size(X); 
        for k=1:K 
       cc=cent(k,:); %centroid of cluster k 
       Ck=repmat(cc,N,1); 
       dif=X-Ck; 
       ddif=dif.*dif; %Nxm matrix of squares 
       dist(k,:)=sum(ddif');  
        %distances from entities to cluster centroid 
        end 
        [aa,bb]=min(dist); %Minimum distance rule 
        wc=sum(aa); 
        labelc=bb; 
        return 
 
5.Centroids update: Put centroids in gravity centres of clusters defined by the 

array of cluster labels labelc according to data in matrix X, to produce KxV array 
centres of the centroids: 

 
     function  centres=ceupdate(X,labelc) 
        K=max(labelc); 
        for k=1:K 
        clk=find(labelc==k); 
        elemk=X(clk,:); 
        centres(k,:)=mean(elemk); 



 267 

        end 
        return 
 
Batch K-Means with MatLab, therefore, is to embrace steps 3-6 above and out-

put a clustering in cell array termed, say, Clusters, along with the proportion of 
unexplained data scatter found by using preliminarily standardized matrix X and 
set of initial centroids, cent, as input. This can be put like this: 

 
      function [Clusters,uds]=k_means(X,cent) 
       [N,m]=size(X); 
       [K,m1]=size(cent); 
       flag=0; %-- stop-condition 
       membership=zeros(N,1); 
       dd=sum(sum(X.*X)); %-- data scatter 
       %--- clusters and centroids updates 
       while flag==0 
        [labelc,wc]=clusterupdate(Y,cent); 
        if isequal(labelc,membership)  
          %--stop-condition’s working 
       flag=1; 
       centre=cent; 
       w=wc; 
        else 
       cent=ceupdate(Y,labelc); 
       membership=labelc; 
        end 
     end 

 %-----preparing the output -------------- 
       uds=w*100/dd; 
       Clusters{1}=membership; 
       Clusters{2}=centre; 
       return 
 

Q.5.10. Check the values of criterion (5.3) at each initial settingconsidered for 
Company data above. Find out which is the best among them. 

 
Q.5.11. Prove that the square-error criterion (5.2) can be reformulated as the sum 
of within cluster variances σkv

2 = Σ 2(yi∈Sk iv-c ) /Nkv k weighted by the cluster cardi-
nalities Nk: 

 
Q.5.12. Prove that reformulation (5.9) of criterion (5.3) in terms of the squared  
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Euclidean distances is correct.  
 

Table 5.6. Cross classification of the original Iris taxa and 3-cluster clustering 
found starting from entities 1, 51 and 101 as initial seeds. The clustering does 
separate Iris Setosa but misplaces 14+3=17 specimens between two other taxa.  

 
 Cluster Setosa Versicolor Virginica Total 
 
 

S1 50 0 0 50  
 
 S2 0 47 14 61 

S3 0 3 36 39 

Total 50 50 50 150 

Q.5.13. Prove that if Batch K-Means is applied to Iris data mean-range normal-
ized with K=3 and specimens 1, 51, and 101 taken as the initial centroids, the re-
sulting clustering cross-classified with the prior three classes forms contingency 
table presented in Table 5.6. 

 
In the following two sections we describe two approaches at reaching deeper 

minima of K-Means criterion (5.3): (a) an incremental version and (b) nature in-
spired versions. 

5.1.2 Incremental K-Means 

P5.1.2 Incremental K-Means: Presentation 

An incremental version of K-Means uses the Minimum distance rule not for all 
of the entities but for one of them only. There can be two different reasons for do-
ing so:  

 
(Ri) The user is not able to operate over the entire data set and takes entities in 

one by one, because of the data protocol, so that entities  are to be clustered on the 
fly as, for instance, in an on-line application process. 
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(Rii) The user operates with the entire data set, but wants to smooth the action 
of the algorithm so that no drastic changes in the cluster contents may occur. To 
do this, the user may specify an order of the entities and run entities one-by-one in 
this order for a number of epochs like it is done in a neural network learning proc-
ess. 

 
The result of such a one-by-one entity processing may differ from that of Batch 

K-Means because each version finds a locally optimal solution on a different 
structure of locality neighborhoods.  

 
Q.5.14. What is the difference in neighborhoods between Batch and incremental 
versions of K-Means?  

 
Q.5.15. Consider a run of incremental K-Means at situation Rii on the Companies 
data, at which  the order of entities follows the order of their distances to nearest 
centroids. Let K=3 and entities Av, Ba and Ci initial centroids. A. Sequential steps 
of the incremental computation are presented in Table 5.7. In this table, cluster 
updates are provided as well as their centroids after each single update. The col-
umn on the right presents squared Euclidean distances between centroids and enti-
ties yet unclustered, with the minima highlighted in bold. The minimum distance 
determines, in this version, which of the entities joins the clustering next. One can 
see that on iteration 2 company Br switches to centroid Ba after centroid Ci of the 
third cluster had been updated to the mean of Ci and Cy – because its distance to 
the new centroid increased from the minimum 0.83 to 1.20. This leads to correct, 
product-based, clusters. 

 
Q.5.16. Prove that the same initialization leads to wrong, that is, non-product 
based, clusters with Batch K-Means. 
Table 5.7. Iterations of incremental K-means on standardized Company data  
starting with centroids Av, Ba and Ci 



 270 

Incremental one-by-one entity clustering  Distances 

Iteration Cumulative Centroids An    As     Br     Bu     Cy 
Clusters 

 Av -0.20   0.23  -0.33  -0.62   0.36  -0.22  -0.14   0.51  0.88   2.20   2.25   3.01 
0 Ba -0.23  -0.15  -0.33   0.38   0.36  -0.22  -0.14 1.55  1.94   0.97   0.87   2.46 

1.90  1.81   0.83   1.68   0.61 Ci  0.08  -0.10   0.33   0.38  -0.22  -0.22    0.43 
 Av, An  0.10   0.14  -0.17  -0.62   0.36  -0.22  -0.14            0.70   1.88   2.50   2.59 
1 Ba -0.23  -0.15  -0.33   0.38   0.36  -0.22  -0.14          1.94   0.97   0.87   2.46 

         1.81   0.83   1.68   0.61 Ci  0.08  -0.10   0.33   0.38  -0.22  -0.22    0.43 
         0.70   1.88   2.50    Av, An  0.10   0.14  -0.17  -0.62   0.36  -0.22  -0.14   

2 Ba -0.23  -0.15  -0.33   0.38   0.36  -0.22  -0.14          1.94   0.97   0.87   
Ci, Cy  0.18   0.24   0.50   0.38  -0.22  -0.22    0.43          1.95   1.20   2.40 

 Av, An, As  0.10   0.12  -0.11  -0.62   0.17  -0.02  -0.14                      1.49  2.12   
                   0.97  0.87   3 Ba -0.23  -0.15  -0.33   0.38   0.36  -0.22  -0.14 

Ci, Cy  0.18   0.24   0.50   0.38  -0.22  -0.22   0.43                    1.20  2.40 
 Av, An, As   0.10   0.12  -0.11  -0.62   0.17  -0.02  -0.14                      1.49     
4 Ba, Bu  -0.42  -0.29  -0.33   0.38   0.07   0.07  -0.14              0.64     

             1.20   Ci, Cy   0.18   0.24   0.50   0.38  -0.22  -0.22    0.43 
 Av, An, As  0.10   0.12  -0.11  -0.62   0.17  -0.02  -0.14     
5 Ba, Bu, Br -0.21  -0.29  -0.22   0.38  -0.02   0.17  -0.14 

Ci, Cy  0.18   0.24   0.50   0.38  -0.22  -0.22    0.43 

F5.1.2 Incremental K-Means: Formulation 

When an entity yi joins cluster Sk whose cardinality is Nk, centroid ck changes to 
c'k to follow the within cluster means, according to the following formula: 

 
c'k=Nkck/(Nk+1) + yi/(Nk+1) 

 
When yi moves out of cluster Sk, the formula remains valid if all pluses are 

changed for minuses. To extend the formula so that it holds for both cases, let us 
introduce variable zi which is equal to +1 when yi joins the cluster and -1 when it 
moves out of it. Then the extended formula is: 

 
c'k=Nkck/(Nk+ zi) + yizi/(Nk+ zi) 

 
Accordingly, the distances from other entities change to d(yj, c' ).  k

 
Because of the incremental setting, the stopping rule of the straight version (reach-
ing a stationary state) may be not necessarily applicable here. In Ri case, the natu-
ral stopping rule is to end when there are no new entities observed. In Rii case, the 
process of running through the entities one-by-one stops when all entities remain 
in their clusters. The process may be stopped as well when a pre-specified number 
of runs through the entity set, that is, epochs, is reached. 
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5.1.3 Nature inspired algorithms for K-Means 

P5.1.3 Nature inspired algorithms: Presentation 

In real-world applications, K-Means typically does not move far away from the 
initial setting of centroids. Considered in the perspective of minimization of crite-
rion (5.3), this leads to the strategy of multiple runs of K-Means starting from ran-
domly generated sets of centroids to reach as deep a minimum of (5.3) as possible. 
This strategy works well on illustrative small data sets but it may fail when the 
data set is large because in this case random settings cannot cover the space of so-
lutions in a reasonable time. Nature inspired approach provides a well-defined 
framework for using random centroids in parallel, rather than in sequence, to 
channel them to deeper minima as an evolving population of admissible solutions. 
The main difference of the nature inspired optimization from the classical optimi-
zation is that the latter reaches for a single solution, provably optimal, whereas the 
former runs a population of solutions and does not much care for the provability. 

 
A nature inspired algorithm mimics some natural process to set rules for the 

population behavior and/or evolution. Among the nature inspired approaches, the 
following are especially popular: 

A. Genetic 
B. Evolutionary 
C. Particle swarm optimization 

A K-Means method according to each of these will be described in this section. 
 

A nature inspired algorithm proceeds as a sequence of steps of evolution for a 
population of possible solutions, that is, clusterings represented by specific data 
structures. A K-Means clustering comprises two items: a partition S of the entity 
set I in K clusters and a set of clusters’ K centroids c={c1, c2,…, cK}. Typically, 
only one of them is carried out in a nature-inspired algorithm. The other is easily 
recovered according to K-Means rules. Given a partition S, centroids ck are found 
as vectors of within cluster means. Given a set of centroids, each cluster Sk is de- 
fined as the set of points nearest to its centroid ck, according to the Minimum dis-
tance rule (k=1, 2, …, K). Respectively, the following two representations are 
most popular in nature inspired algorithms:  
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 (i)   Partition as a string, and  

(ii)  Centroids as a string. 

Consider them in turn. 
 

(i) Partition as a string  
Having pre-specified an order of entities, a partition S can be represented as a 
string of cluster labels k=1,2,…, K of the entities thus ordered. If, for instance, 
there are eight entities ordered as e1, e2, e3, e4, e5, e6, e7, e8, then the string 
12333112 represents partition S with three classes according to the labels, S1={e1, 
e6, e7}, S2={e2, e8}, and S3={e3, e4, e5}, which can be easily seen from the dia-
gram relating the entities and labels: 

    e1 e2 e3 e4 e5 e6 e7 e8 
     1   2   3   3   3   1  1   2 
A string of N integers from 1 to K is considered not admissible, if some integer 

between 1 and K is absent from it (so that the corresponding cluster is empty). 
Such a not admissible string for the entity set above would be 11333111, because 
it lacks label 2 and, therefore, makes class S2 empty. 

 
Table 5.8. Centroids of clusters S1={e1, e6, e7}, S2={e2, e8}, and S3={e3, e4, 

e5} according to data in Table 5.1.  
 

Av 
Bu 
Ci 

-0.20   0.23   -0.33    -0.63    0.36    -0.22    -0.14 
-0.60  -0.42   -0.33     0.38   -0.22     0.36    -0.14 
 0.08  -0.10    0.33     0.38   -0.22    -0.22      0.43 

Centroid1 -0.24  -0.09   -0.11     0.04   -0.02    -0.02     0.05 

An 
Cy 

 0.40   0.05     0        -0.62    0.36     -0.22   -0.14 
 0.27   0.58     0.67    0.38   -0.22     -0.22    0.43 

Centroid2  0.34   0.31     0.33   -0.12    0.07     -0.22    0.14 

As 
Ba 
Br 

 0.08    0.09    0.00   -0.62   -0.22      0.36   -0.14 
-0.23  -0.15   -0.33     0.38    0.36     -0.22   -0.14 
 0.10  -0.29     0.00     0.38   -0.22      0.36   -0.14 

Centroid3  0.01  -0.12    -0.11     0.04   -0.02     0.17    -0.14 

 
 

(ii) Centroids as a string 
Consider the same partition on the set of eight objects that will be assumed the 
companies in Company data Table 5.1 in their order. Clusters S1={e1, e6, e7}, 
S2={e2, e8}, and S3={e3, e4, e5}, as well as their centroids, are presented in Ta-
ble 5.8. The three centroids form a sequence of 7×3=21 numbers c=(-0.24, -0.09, -
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0.11, 0.04, -0.02, -0.02, 0.05, 0.34, 0.31, 0.33,  -0.12,  0.07,  -0.22,  0.14,  0.01, -
0.12, -0.11, 0.04, -0.02, 0.17, -0.14), which suffices for representing the cluster-
ing: the sequence can be easily converted back in three 7-dimensional centroid 
vectors to recover then clusters with the Minimum distance rule. It should be 
pointed out that the original clusters may be somewhat weird and not recoverable 
in this way. For example, entity e4, which is Ba, appears to be nearer to centroid 1 
rather than to centroid 3 so that the Minimum distance rule would produce clusters 
S1={e1, e4, e6, e7}, S2={e2, e8}, and S3={e3, e5} rather than those original ones, 
but such a loss makes no difference, because K-Means clusters necessarily satisfy 
the Minimum distance rule so that all the entities are nearest to their cluster’s cen-
troids.  

What is important is that any 21-dimensional sequence of real values can be 
treated as the clustering code for its centroids.  

C5.1.3.1  GA for K-Means clustering: Computation 

Genetic algorithms work over a population of strings, each representing an ad-
missible solution and referred to as a chromosome. The optimized function is re-
ferred to as the fitness function. Let us use partition as a string represenatation for 
partitions S = {S1, … , SK} of the entity set. The minimized fitness function is the  
summary within-cluster distance to centroids,  the function W(S,c) in (5.3): 

 
0. Initial setting. Specify an even integer P for the population size (no rules 

exist for this), and randomly generate P chromosomes, that is, strings 
s1,..,sP of K integers 1 ,…, K in such a way that all K integers 1, 2, …, K 
are present within each chromosome.. For each of the strings, define cor-
responding clusters, calculate their centroids as gravity centres and the 
value of criterion, W(s1), …, W(sP), according to formula (5.3).  

1. Mating selection. Choose P/2 pairs of strings to mate and produce two 
“children” strings. The mating pairs usually are selected randomly (with 
replacement, so that the same string may appear in several pairs and, 
moreover, can form both parents in a pair). To mimic Darwin’s “survival 
of the fittest” law, the probability of selection of string st (t=1,…,P) 
should reflect its fitness value W(st). Since the fitness is greater for the 
smaller W value, some make the probability inversely proportional to 
W(st) (see Murthy, Chowdhury, 1996) and some to the difference be-
tween a rather large number and W(st) (see Yi Lu et al. 2004). This latter 
approach can be taken further with the probability proportional to the ex-
plained part of the data scatter – in this case “ the rather large number” is 
the data scatter rather than an arbitrary value.. 

2. Cross-over.  For each of the mating pairs, generate a random number r 
between 0 and 1. If r is smaller than a pre-specified probability p (typi-
cally, p is taken about 0.7-0.8), then perform a crossover; otherwise the 
mates themselves are considered the result. A (single-point) crossover of 
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string chromosomes a=a1a2…aN and b=b1b2…bN is performed as follows. 
A random number n between 1 and N-1 is selected and the strings are 
crossed over to produce children a1a2…anbn+1…bN and b1b2…bnan+1…aN. 
If a child is not admissible (like, for instance, strings a=11133222 and 
b=32123311 crossed over at n=4 would produce a′=11133311 and 
b′=32123222 so that a′ is inadmissible because of absent 2), then various 
policies can be applied. Some authors suggest the crossover operation to 
be repeated until an admissible pair is produced. Some say inadmissible 
chromosomes are ok, just they must be assigned with a smaller probabil-
ity of selection.  

3. Mutation. Mutation is a random alteration of a character in a chromo-
some. This provides a mechanism for jumping to different “ravines” of 
the minimized fitness function. Every character in every string is subject 
to the mutation process, with a low probability q which can be constant 
or inversely proportional to the distance between the corresponding entity 
and corresponding centroid. 

4. Elitist survival. This strategy suggests keeping the best fitting chromo-
some(s) stored separately. After the crossover and mutations have been 
completed, find fitness values for the new generation of chromosomes. 
Check whether the worst of them is better than the record or not. If not, 
put the record chromosome instead of the worst one into the population. 
Then find the record for thus obtained population. 

5. Halt condition. Check the stop condition (typically, a limit on the num-
ber of iterations). If this doesn’t hold, go to 1; otherwise, halt. 

 
Y. Lu et al. (2004) note that such a GA works much faster if after step 3. Mutation 
the labels are changed according to the Minimum distance rule. They apply this 
instead of the elitist survival. 

Thus, a GA algorithm operates with a population of chromosomes representing 
admissible solutions. To update the population, mates are selected, undergone a 
cross-over process generating offspring which then is subjected to mutation proc-
ess. Elite maintenance completes the update. In the end, the elite is output as the 
best solution. 

A computational shortcoming of the GA algorithm is that the length of the 
chromosomes is the size of the entity set N, which may run in millions in contem-
porary applications. Can this be overcome? Sure, by using centroid not partition 
strings to represent a clustering. Centroid string sizes depend on the number of 
features and number of clusters, not the number of entities. Another advantage of 
centroid strings is in the mutation process. Rather than an abrupt swap between 
literals, they can be changed softly, in a quantitative manner by adding or subtract-
ing a small change. This is utilized in evolutionary and particle swarm algorithms.  

 
C5.1.3.2  Evolutionary K-Means: Computation 
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The chromosome is represented by a set of K centroids c=(c1, c2, … cK) which can 
be considered a string of  KV real (“float”) numbers. In contrast to the partition-as-
string representation, the length of the string here does not depend on the number 
of entities that can be of advantage when the number of entities is massive. Each 
centroid in the string is analogous to a gene in the chromosome. 

 
The crossover of two centroid strings c and c′, each of the length KV, is performed 
at a randomly selected place n, 1≤ n < KV, exactly as it is in the genetic algorithm 
above. Chromosomes c and c′ exchange the portions lying to the right of n-th 
component to produce two offspring.  This means that, a number of centroids in c 
is substituted by corresponding centroids in c′. Moreover, if n cuts across a cen-
troid, its components change in each of the offspring chromosomes. 

 
The process of mutation, according to Bandyopadhyay and Maulik (2002), can be 
organized as follows. Given the fitness W values of all the chromosomes, let minW 
and maxW denote their minimum and maximum respectively. For each chromo-
some, its radius R is defined as a proportion of maxW reached at it: R=(W-
minW)/(maxW-minW). When the denominator is 0, that is, if minW = maxW, de-
fine R=1 in all chromosomes. Here, W is the fitness value of the chromosome un-
der consideration. Then the mutation intensity δ is generated randomly in the in-
terval between –R and +R.  
 
Let  minv and maxv denote the minimum and maximum values in the data set 
along feature v (v=1,…, V). Then every v-th component xv of each centroid ck in  
the chromosome changes to 

xv+δ∗(maxv – xv) if  δ≥0 (increase), or 
xv+δ∗(xv - minv), otherwise (decrease).  

 
The perturbation leaves chromosomes within the hyper-rectangle defined by 
boundaries minv and maxv. Please note that the best chromosome, at which 
W=minW, does not change in this process because its R=0. 

 
Elitism is maintained in the process as well.  

 
The algorithm follows the scheme outlined for the genetic algorithm.  
Based on little experimentation, this algorithm is said to outperform the previous 
one, GA, many times in terms of the speed of convergence. 
 
The evolutionary approach can be further modified such as, for example, the so-
called Differential evolution (see Paterlini and Krink 2006 who claim that this 
method outperforms the others in K-Means). In Differential evolution, the cross-
over, mutation and elite maintenance are merged together by removing the mating 
stage and changing those for the following. An offspring chromosome is created 
for every chromosome t in the population (t=1, …, P) as follows. Three other 
chromosomes, k, l and m, are taken randomly from the population. Then, for every 
component (gene) x.t of the chromosome t, a uniformly random value r between 0 
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and 1 is drawn. This value is compared to the pre-specified probability p (some-
what between 0.5 and 0.8). If  r > p then the component goes to the offspring un-
changed. Otherwise, this component is substituted by the linear combination of the 
same component in the three other chromosomes:  x.m + α∗(x.k-x.l) where α is a 
small scaling parameter. After the offspring’s fitness is evaluated, it substitutes 
chromosome t if it is better; otherwise, t remains as is and the process applies to 
the next chromosome. 

 

C5.1.3.3  Particle swarm optimization for K-Means: Computation 

 
Particle swarm mimics a drift of a bee population so that the population members 
here are not crossbred, nor they mutate. They just move randomly by drifting in 
random directions having an eye on the best places visited so far, individually and 
socially. This can be done because they are vectors of real numbers. Because of 
the change, the genetic metaphor is abandoned here, and the elements are referred 
to as particles rather than chromosomes, and the set of them as a swarm rather 
than a population. 

 
Each particle comprises: 

- a position vector x that is an admissible solution to the problem in ques-
tion (such as the KV centroid vector in K-Means),  

- the evaluation of its fitness f(x) (such as the summary distance W in 
(5.3)),  

- a velocity vector z of the same dimension as x, and  
- the record of the best position b reached by the particle so far.  

The swarm best position bg is determined as the best among all the individual best 
positions b. 

 
At iteration t (t=0,1,…) the next iteration’s position is defined as the current posi-
tion shifted by the velocity vector: 

  x(t+1) = x(t) + z(t+1) 
where z(t+1) is computed as a change in the direction of personal and population’s 
best positions: 

  z(t+1) = z(t) + α (b-x(t)) + β (bg – x(t)) 
 

where 
- α and β are uniformly distributed random numbers (typically, within the 

interval between 0 and 2, so that they are around unity),  
- item α(b-x(t)) is referred to as the cognitive component and  
- item β(bg – x(t)) as the social component of the process. 
 

Initial values x(0) and z(0) are generated randomly within the manifold of admis-
sible values. 
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In some implementations, the group best position bg is changed for that of local 
best position bl that is defined by the particle’s neighbors only so that some pre-
defined neighborhood topology makes its effect. There is a report that the local 
best position works especially well, in terms of the depth of the minimum reached, 
when it is based on just two Euclidean neighbors. 

 
Q.5.17. Formulate a particle swarm optimization algorithm for K-Means cluster-
ing. 

5.1.4 Partition around medoids PAM 

K-Means centroids are average points rather than individual entities, which may 
be considered artificial in contexts in which the user may wish to involve but only 
genuinely occurring real world entities rather the “synthetic” averages. Estates or 
art objects or countries are examples of entities for which this makes sense. To 
implement the idea, let us change the concept of cluster prototype from centroid to 
medoid (Kaufman and  Rousseeuw 1990). An entity in a cluster S, i*∈S, is re-
ferred to as its medoid if it is the nearest in S to all other elements of S, that is, if i* 
minimizes the sum of distances D(i)=Σj∈Sd(i,j) over all i∈S. The symbol d(i,j) is 
used here to denote any dissimilarity function, which may or may not be squared 
Euclidean distance, between observed entities i ,j∈I. 
 
The method of partitioning around medoids PAM (Kaufman and Rousseeuw 
1990) works exactly as Batch K-Means with the only difference that medoids, not 
centroids, are used as cluster prototypes. It starts, as usual, with choosing the 
number of clusters K and initial medoids c=(c1, c2, …, cK) that are not just M-
dimensional points but individual entities. Given medoids c, clusters Sk are col-
lected according to the Minimum distance rule – as sets of entities that are nearest 
to entity ck  for all k=1, 2,…, K. Given clusters Sk, medoids are updated according 
to the definition. This process reiterates again and again, and halts when no 
change of the clustering occurs. It obviously will never leave a cluster Sk empty. If 
the size of the data set is not large, all computations can be done over the entity-
to-entity distance matrix without ever changing it. 
 
Worked example 5.2. PAM applied to Company data 
 
Let us apply PAM to the Company data displayed in Table 5.1 with K=3 and entities Ave, 
Bre and Cyb as initial medoids. We can operate over the distance matrix, presented in Table 
5.9, because there are only eight entities. 
 
With these seeds, the Minimum distance rule would obviously produce the product-based 
clusters A, B, and C. At the next iteration, clusters' medoids are computed: they are obvi-
ously Ant in A cluster, Bum in B cluster and either of the two entities in C cluster – leave it 
thus at the less controversial Cyb. With the set of medoids changed to Ant, Bum and Cyb, 
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we apply the Minimum distance rule again, leading us to the product-based clusters again. 
This halts the process. 
 
Table 5.9. Distances between standardized Company entities. For the sake of convenience, 
those smaller than 1, are highlighted in bold. 
 

Entities Ave    Ant    Ast     Bay   Bre    Bum  Civ    Cyb  
0.00   0.51   0.88   1.15   2.20   2.25   2.30   3.01 Ave  
0.51   0.00   0.77   1.55   1.82   2.99   1.90   2.41 Ant  
0.88   0.77   0.00   1.94   1.16   1.84   1.81   2.38 Ast  
1.15   1.55   1.94   0.00   0.97   0.87   1.22   2.46 Bay  
2.20   1.82   1.16   0.97   0.00   0.75   0.83   1.87 Bre  
2.25   2.99   1.84   0.87   0.75   0.00   1.68   3.43 Bum  
2.30   1.90   1.81   1.22   0.83   1.68   0.00   0.61 Civ  
3.01   2.41   2.38   2.46   1.87   3.43   0.61   0.00       Cyb  

 
Note that PAM can lead to instability in results because the assignment depends on dis-
tances to just a single entity.   
 
Q. 5.18. Why Cyb is less controversial than Civ in table 5.9? A. Because Cyb unequivo-
cally relates to Civ only, whereas Civ is close to Bre as well. 
 
Q. 5.19. Assume that the distance d(Bre,Bum) in Table 5.9 is 0.85 rather than 0.75. Show 
that then if one chooses Civ to be medoid of C cluster, then the Minimum distance rule 
would assign to Civ not only Cyb but also Bre, because its distance to Civ, 0.83, would be 
less than its distance to Bum, 0.85.   Show that this cluster, {Civ, Cyb, Bre} will remain 
stable over successive iterations. 

5.1.5 Initialization of K-Means 

To initialize K-Means, one needs to specify:  
 
(i) the number of clusters, K, and 
  
(ii) initial centroids, c=(c1, c2, …, c ).  K
 

Each of these can be of an issue in practical computations. Both depend on the 
user's expectations related to the level of granularity and typological attitudes, 
which remain beyond the scope of the theory of K-Means. This is why some sug-
gest relying on the user’s view of the substantive domain to specify the number 
and positions of initial centroids as hypothetical prototypes. There have been how-
ever a number of approaches for specifying the number and location of the initial 
centroids by exploring the structure of the data, of which we describe the follow-
ing three:  

(a) multiple runs of K-Means; 
(b) distant representatives; 



 279 

(c) anomalous patterns.  
 

(a)     Multiple runs of K-Means 
 

According to this approach, at a given  K, a number of K-Means’ runs R is pre-
specified; each run starting with K randomly selected entities as the initial seeds 
(randomly generated points within the feature ranges have proven to give inferior 
results in experiments reported by several authors). Then the best result in terms of 
the square-error criterion W(S,c) (5.3) is output. This can be further extended to 
choosing the  “right” number of clusters K. Let us denote by WK the minimum 
value of W(S,c) found after R runs of K-Means over random initializations. Then 
the series WK found at different K, from a pre-specified range say between 2 and 
20, is usually taken to see which K would lead to the best WK over the range. Un-
fortunately, the best WK is not necessarily minimum WK, because the minimum 
value of the square-error criterion cannot increase when K grows, which should be 
reflected in the empirically found WK’s. In the literature, a number of stop criteria 
utilizing WK have been suggested based on some simplified data models and intui-
tion such as “gap” or “jump” statistics. Unfortunately, they all may fail even in the 
relatively simple situations of controlled computation experiments (see Chiang 
and Mirkin 2010 for a review). 

 
A relatively simple heuristic rule is based on the intuition that when there are 

K* well separated clusters, then for K<K* a (K+1)-cluster partition should be the 
K-cluster partition with one of its clusters split in two, which would drastically de-
crease WK+1 from WK. On the other hand, at K>K*, both K- and (K+1)-cluster par-
titions are to be the “right” K*-cluster partition with some of the “right” clusters 
split randomly, so that WK and WK+1 are not that different. Therefore, as “a crude 
rule of thumb”, Hartigan (1975, p. 91) proposed calculating index 

 
 HK=(WK/WK+1  −1)(N−K−1),  

 
where N is the number of entities, while increasing K, so that the very first K at 
which HK becomes smaller than 10 is to be taken as the estimate of K*. It should 
be noted that, in the experiments by Chiang and Mirkin (2010), this rule came as 
the best of a set of nine different criteria and, moreover, the threshold 10 in the 
rule appears to be not very sensitive to 10-20% changes. 

 
Case study 5.4. Hartigan’s index for choosing the number of clusters 

Consider values of HK for Iris and Town datasets computed after the results of 100 runs of 
Batch K-Means using the mean/range standardization starting from random K entities taken 
as seeds (Table 5.10). Each of the computations has been repeated twice (see 1st and 2d sets 
in Table 5.10) to illustrate typical variations of HK values due to the fact that empirical val-
ues of WK may be not optimal. In particular, at the 2d set of K-Means over Town data we 
can see a break of the rule that HK is positive because of the monotonic relation between K 
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and the optimal WK  that are to decrease when K grows. The monotonic relation here is bro-
ken because the values of WK after 100 runs are not necessarily minimal indeed. 

 
Table 5.10. Values of Hartigan’s HK index for two data sets at K ranging from 2-11 as 

based on two different sets of 100 clusterings from random K entities as initial centroids. 
 

Dataset K= 2      3        4        5         6       7       8        9        10     11 
Iris 1st set 

2d  set 
108.3   38.8   29.6   24.1   18.6   15.0  16.1   15.4   15.4   9.4 
108.3   38.8   29.6   24.1   18.7   15.4  15.6   15.7   16.0   7.2 

Town 1st set 
2d  set 

  13.2   10.5     9.3     5.0     4.7     3.1    3.0     3.2     3.2   1.6 
  13.2   10.5     9.3     5.8     4.1     2.5    3.0     7.2    -0.2   1.8 

 
The “natural” number of clusters in Iris data, according to Hartigan’s criterion is not 3 as 
claimed because of substantive considerations but much greater, 11! In Town data set, the 
criterion would indicate 4 naturally occurring clusters. However, one should argue that the 
exact value of 10 in Hartigan’s rule does not bear much credibility – it should be accompa-
nied by a significant drop in HK value. We can see such a drop at K=5, which should be 
taken, thus, as the “natural” number of clusters in Town data.  Similarly, a substantial drop 
of HK on Iris data occurs at K=3, which is the number of natural clusters, taxa, in this set. 

 
Altogether, making multiple runs of K-Means seems a sensible strategy, espe-

cially when the number of entities is not that high. With the number of entities 
growing into thousands, the number of tries needed to reach a representative value 
of WK may become prohibitively large. Deeper minima can be sought by using the 
evolutionary schemes described above. On the other hand, the criterion W(S,c)  
has some intrinsic flaws and should be used only along some domain-knowledge 
or data-structure based strategy. 

 
Two data-driven approaches, (b) and (c) above, to defining initial centroids are 

described in the next two sections. They both employ the idea that clusters should 
represent some anomalous yet typical tendencies. 

 
(b)  “Build” algorithm for a pre-specified K (Kaufmann and Rouseeuv 1990) 
 
This process involves only actual entities. It starts with choosing the medoid of set 
I, that is, the entity whose summary distance to the others is minimum, and takes it 
as the first medoid c1. Assume that a subset of m initial seeds have been selected 
already (K>m≥1) and proceed to selecting cm+1. Denote the set of already selected 
seeds by c and consider all remaining entities i∈I-c. Define distance d(i,c) as the 
minimum of the distances d(i, ck) (k=1,…, m) and form an auxiliary cluster Ai con-
sisting of such j that are closer to i than to c so that Eij=d(j,c)-dij >0. The summary 
value Ei = Σj∈Ai Eij reflects both the number of points in Ai and their remoteness 
from c. That i∈I-c for which Ei is maximum is taken as the next seed cm+1.  
 
Worked example 5.3. Selection of initial medoids in Company data 
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Let us apply Build algorithm to the matrix of entity-to-entity distances for Company data 
displayed in Table 5.9, at K=3. First, we calculate the summary distances from all the enti-
ties to the others, see Table 5.11, and notice that Bre is the medoid of the entire set I, be-
cause its total distance to the others, 9.60, is the minimum of total distances in Table 5.11. 
Thus, we set Bre as the first initial seed.  
 
Table 5.11. Summary distances for entities according to Table 5.9. 

Entity   Ave     Ant       Ast      Bay     Bre     Bum    Civ      Cyb 
Distance to others 12.30   11.95   10.78   10.16    9.60   13.81   10.35   16.17 

 
Now we build auxiliary clusters Ai around all other entities. To form AAve , we take the dis-
tance between Ave and Bre, 2.20, and see, in Table 5.10, that distances from Ave to entities 
Ant, Ast, and Bay are smaller than that, which makes them Ave's auxiliary cluster with EAve 
=4.06. Similarly, AAnt is set to consist of the same entities, but it is less remote than Ave be-
cause E  = 2.98 is less than EAnt Ave. Auxiliary cluster AAst consists of Ave and Ant with even 
smaller EAst =0.67. Auxiliary clusters for Bay,  Civ and Cyb consist of one entity each 
(Bum, Cyb and Civ, respectively) and have much smaller the levels of remoteness; cluster 
ABum  is empty because Bre is its nearest. This makes the most remote entity Ave the next 
selected seed. Now, we can start building auxiliary clusters on the remaining six entities 
again. Of them, clusters A  and AAnt Bum are empty and the others are singletons, of which A

  consisting of Civ is the remotest, with  ECyb Cyb=1.87-0.61=1.26. This completes the set of 
initial seeds: Bre, Ave, and Cyb. Note, these are companies producing different products. It 
is this set that was used to illustrate PAM in section 5.1.4. 

 
(c)   Anomalous patterns (Mirkin 2005) 

 
This method involves remote clusters, as Build does, too, but it does not dis-

card them after finding, which allows for obtaining the number of clusters K as 
well. Besides, it is less computationally intensive. The method employs the con-
cept of reference point. A reference point is chosen to exemplify an “average” or 
“normal” entity, not necessarily among the dataset. For example, when analyzing 
student marks over different subjects, one might choose a ``normal student'' point 
which would indicate levels of marks in tests and work in projects that are consid-
ered normal for the contingent of students under consideration, and then see what 
patterns of observed behavior deviate from this. Or, a bank manager may set as his 
reference point, a customer having specific assets and backgrounds, to see what 
patterns of customers deviate from this. In engineering, a moving robotic device 
should be able to segment the environment into homogeneous chunks according to 
the robot's location as its reference point, with objects that are nearer to it having 
finer resolution than objects that are farther away. In many cases the gravity center 
of the entire entity set, its “grand mean”, can be taken as a reference point of 
choice. 

 
Using the chosen reference point allows for the comparison of entities with it, 

not with each other, which drastically reduces computations: instead of mulling 
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over all the pair-wise distances, one may focus on entity-to-reference-point dis-
tances only – a reduction to the order of N from the order of N2. 

 
Reference point Reference point

Initial  cluster center

1/2

1/2

Final cluster   center

The farthest entity

     
 
Figure 5.10. Extracting an Anomalous pattern cluster with the reference point 

in the gravity center: the first iteration is on the left and the final one on the right. 
 
An anomalous pattern is found by building a cluster which is most distant from 

the reference point. To do this, the cluster’s seed is defined as the entity farthest 
away from the reference point. Now a version of K-Means at K=2 is applied with 
two seeds: the reference point which is never changed in the process and the clus-
ter's seed, which is updated according to the standard procedure. In fact, only the 
anomalous cluster is of interest here. Given a centroid, the cluster is defined as the 
set of entities that are closer to it than to the reference point. Given a cluster, its 
centroid is found as the gravity center, by averaging all the cluster entities. The 
procedure is reiterated until convergence (see Figure 5.10).  

 
Obviously, the Anomalous pattern method is a version of K-Means in which: 
 

(i) the number of clusters K is 2; 
 

(ii) centroid of one of the clusters is 0, which is forcibly kept there 
 through all the iterations; 

 
        (iii) the initial centroid of the anomalous cluster is taken as an entity far
 thest away from 0. 

 
Property (iii) mitigates the issue of determining appropriate initial seeds. This pro-
vides for using Anomalous pattern algorithm iteratively to obtain an initial setting 
for K-Means. 

 
There is a certain similarity between selecting initial centroids in iK-Means and 
initial medoids with Build. But there are certain differences as well: 
- K must be pre-specified in Build and not necessarily in iK-Means; 
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- The central point of the entire set I is taken as an initial seed in Build and is not 
in iK-Means; 
- Addition of a new seed is based on different criteria in the two methods. 

 
A clustering algorithm should present the user with a comfortable set of op-

tions. The iK-Means or PAM with Build/AP can be easily extended so that some 
entities can be removed from the data set because they are either (i) “deviant” or  
(ii) “intermediate” or (iii) “trivial”. These can be defined as the contents of small 
AP or Build clusters, for the case (i), or entities that are far away from their cen-
troids/medoids, for the case (ii), or entities that are close to the grand mean, the 
center of gravity of the entire data set, for the case (iii).  

 
Worked example 5.4.  Anomalous pattern in Market towns 

 
Let us apply the Anomalous pattern method to Town data assuming the grand mean as 

the reference point and scaling by range. That means that after mean-range standardization 
the reference point is 0. 

 
The point farthest from 0 to taken as the initial “anomalous” centroid, appears to be en-

tity 35 (St Austell) whose distance from zero (remember – after standardization!) is 4.33, 
the maximum. There are only three entities, 26, 29 and 44 (Newton Abbot, Penzance and 
Truro) that are closer to the seed than to 0, thus forming the cluster along with the original 
seed, at this stage. After one more iteration, the anomalous pattern cluster stabilizes with 8 
entities 4, 9, 25, 26, 29, 35, 41, 44. Its centroid is displayed in Table 5.12. 

 
 Table 5.12. Centroid of the anomalous pattern cluster of Town data in real and stan-

dardized forms.      
 
As follows from the fact that all the standardized centroids are positive and mostly fall 

within the range of 0.3 – 0.5, the anomalous cluster, according to Table 5.12, consists of 
better off towns – all the centroid values are larger than the grand mean by 30 to 50 per cent 
of the feature ranges. This probably relates to the fact that they comprise eight out of the 
eleven towns that have a resident population greater than 10,000. The other three largest 
towns have not made it into the cluster because of their deficiencies in services such as 
Hospitals and Farmers' Markets. The fact that the scale of population is by far the largest in 

the original table doesn't much affect the computation here as it runs with  the range stan-
dardized scales at which the total contribution of this feature is not high, just about 8.5% 
only. It is rather the concerted action of all the features associated with a greater population 
which makes the cluster.  

Centroid P PS Do Ho Ba Sm Pe DIY Sp Po  CAB FM 
Real 18484 7.6 3.6 1.1 11.6 4.6 4.1 1.0 1.4 6.4  1.2 4.0 
Std’zed .51 .38 .56 .36 .38 .38 .30 .26 .44 .47 .30 .18 



 284 

−0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

Newto
Penza

St Au

Truro

−0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

Newto
Penza

St Au

Truro

Brixh

Falmo
Newqu

Tavis

 
Figure 5.11. The first and second iterations of Anomalous pattern cluster on the princi-

pal component plane; the visual separation of the pattern over y axis is due to a very high 
loading of the presence (top) or absence (bottom) of a Farmer’s market. 

 
This process is illustrated on Figure 5.11. The stars show the origin and the anomalous 

seed at the beginning of the iteration. Curiously, this picture does not fit well into the con-
cept of the anomalous pattern cluster, as illustrated on the previous Figure 5.10 – the 
anomalous pattern is dispersed here across the plane, which is at odds with the property that 
the entities in it must be closer to the seed than to the origin. The cause is not an error, but 
the fact that this plane represents all 12 original variables and presents them rather selec-
tively. It is not that the plane makes too little of the data scatter – on the contrary, it makes a 
decent 76% of the data scatter. The issue here is the second axis in which the last feature 
FM expressing whether there is a Farmers market or not takes a lion share – thus stratifying 
the entire image over y axis. 

 
The Figure 5.11 has been produced with commands: 
 
>> subplot(1,2,1);plot(x1,x2,'k.', 0,0,'kp',x1(35),x2(35),'kp');text(x1(fir),x2(fir),ftm); 
>> subplot(1,2,2);plot(x1,x2,'k.', 0,0,'kp',x1a,x2a,'kp');text(x1(sec),x2(sec),fsm); 
 

Here fir and sec are lists of indices of towns belonging to the pattern after the first and  sec-
ond iterations, respectively, while ftm and fsm refer to lists of their names. 
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5.1.6 Anomalous pattern and Intelligent K-Means 

P5.1.6 Anomalous pattern and iK-Means: Presentation 

The Anomalous pattern method can be used as a procedure to automatically de-
termine both the number of clusters and initial seeds for K-Means. Preceded by 
this option, K-Means is referred to as intelligent K-Means, iK-Means for brevity, 
because it relieves the user from the task of specifying the initial setting. 

 
In iK-Means method, the user is required to specify an integer, t, the threshold 

of resolution, to be used to discard all the Anomalous patterns consisting of t or 
less entities. When t=0, nothing is discarded. At t=1 – the default option, singleton 
anomalous patterns are considered a nuisance and put back to the data set. If t=10, 
all patterns with 10 or less entities are discarded as too small to deserve any atten-
tion at all – the level of resolution which may be justified at larger datasets and 
coarser details needed. 

 
In our experiments, the entities comprising singleton Anomalous pattern clus-

ters are frequently erroneous, that is, errors are in some of their features such as, 
for instance, the human age of 5000 years. That means, that Anomalous pattern 
clustering can be used as a device for checking against huge errors in data entries.  

 
The iK-Means method is flexible with regard to outliers and the ``swamp'' of 

inexpressive – normal or ordinary –  entities around the grand mean. For example, 
at its step 4, K-Means can be applied to either the entire dataset or to the set from 
which the smaller APs have been removed. This may depend on the domain: in 
some problems, such as structuring of a set of settlements for better planning or 
monitoring or analysis of climate changes, no entity should be dropped out of the 
consideration, whereas in other problems, such as developing synoptic descrip-
tions for text corpora, some “deviant” texts could be left out of the coverage at all. 

 
In a series of experiments with overlapping Gaussian clusters described by 

Chiang and Mirkin (2010), iK-Means has performed rather well and appeared su-
perior to many other options for choosing K. These options included approaches 
based on post-processing of results of multiple runs of K-Means and then treating 
them according to either of the following: 

 
(a)  Variance based approach: using intuitive or model based functions of cri-
terion (5.3) which should get extreme or “elbow” values at a correct K such as 
Hatigan’s rule above;  
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(b)   Structural approach: comparing within-cluster cohesion versus between-
cluster separation at different K;  
 
(c)   Consensus distribution approach: choosing K according to the distribu-
tion of the consensus matrix for sets of K-Means clusterings at different K. 

 
Some other approaches rely on different ideas for choosing K such as   
  
 (d) using results of a divisive or agglomerative clustering procedure or  
  
 (e) according to the similarity of K-Means clustering results on randomly per-

turbed or sampled data. 
  
Worked example 5.5. Iterated Anomalous patterns in Market towns 

 
Applied to the range-standardized Market town data, AP algorithm iterated until no un-

clustered entities remained, has produced 12 clusters of which 5 are  singletons. These sin-
gletons have strange patterns of facilities indeed. For example, entity 19 (Liskeard, 7044 
residents) has an unusually large number of Hospitals (6) and CABs (2), which makes it a 
singleton cluster. Lists of seven non-singleton clusters are in Table 5.13, in the order of 
their extraction in the iterated AP.  

 
Table 5.13. Iterated AP Market town non-singleton clusters  
 
Cluster # Size Contents Contribution, %

1 8 4, 9,  25,  26,  29,  35,  41,  44 35.1 
3 6 5,   8 , 12,  16,  21,  43 10.0 
4 18 2, 6, 7, 10,13, 14, 17, 22, 23, 24,27, 30, 

31, 33, 34, 37, 38, 40 
18.6 

5 2 3 , 32 2.4 
6 2 1,11 1.6 
8 2 39, 42 1.7 
11 2 20,45 1.2 

 
This cluster structure doesn't much change when, according to the iK-Means algorithm, 
Batch K-Means is applied to the seven centroids (with the five singletons put back into the 
data). Moreover, similar results have been observed with clustering of the original all-
England list of about thirteen hundred Market towns described by a wider list of eighteen 
characteristics of their development: the number of non-singleton clusters was the same, 
with very similar descriptions. 

 
Q.5.20. Why is the contribution of AP 4, 18.6%, greater than that of the preceding 
AP3, 10.0%? A. Because of much larger number of entities, 18 against 6 in AP 3. 
Even if the centroid of AP 3 is further away from 0 than centroid of AP 4, which 
is the cause that AP 3 is extracted first, the contribution takes into account the 
number of entities as well! 
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FC5.1.6 Anomalous pattern and iK-Means:  Formulation and 
computation 

Before substantiating AP algorithm, let us give it a more explicit formulation. 
 
Anomalous pattern (AP) algorithm 
 

1. Pre-processing. Specify a reference point a=(a1,..., aV) (when in doubt, take a 
to be the data grand mean) and standardize the original data table by shifting the 
origin to a=(a1,..., a ). V

 
2. Initial setting. Put a tentative centroid, c, as the entity farthest away from the 
origin, 0. 

 
3. Cluster update. Determine cluster list S around c against the only other ``cen-
troid'' 0, so that entity yi is assigned to S if d(yi,c) < d(yi,0). 

 
4. Centroid update. Calculate the within S mean c' and check whether it differs 
from the previous centroid c. If c' and c do differ, update the centroid by assigning 
c ⇐ c' and go to Step 3. Otherwise, go to 5. 

 
5. Output. Output list S and centroid c, with accompanying interpretation aids (as 
advised in the next section), as the anomalous pattern. 

 
It is not difficult to prove that, like K-Means itself, the Anomalous pattern al-

ternately minimizes a specific version of K-Means general criterion W(S,c) (5.3), 

),0()c,(),( i
Si

i
Si

ydydcSW ∑∑
∉∈

+= (5.14) 

where  S is a subset of I rather than partition and c its centroid. Yet AP differs 
from 2-Means in the following aspect: there is only one centroid, c, which is up-
dated in AP; the other centroid, 0, never changes and serves only to attract not-
anomalous entities. This is why 2-Means produces two clusters whereas AP – only 
one, that is farthest away from the reference point, 0.  

 
In fact, criterion (5.14) can be equivalently rephrased using equations (5.6) and 

(5.7) representing the complimentary criterion B(S,c). When (5.7) applies to the 
situation of two clusters, one with centroid in c, the other in 0, it becomes of find-
ing a cluster S maximizing its contribution to the data scatter T(Y):  

 
              μ2 = zT T TYY z/z z = cv

2|S| =d(0,c)|S|                                         (5.15)      
 



 288 

This means that AP algorithm straightforwardly follows the Principal Component 
Analysis one-by-one extraction strategy extended to binary scoring vectors. That 
is, the model behind AP is a version of the PCA equation (4.10) in which the scor-
ing values z*i are but zeros or ones: 

 
,

0 ,
v v

iv
v

c e i S
y

e i S
+ ∈⎧

= ⎨ + ∉⎩
                         (5.16) 

where S is the cluster list of the anomalous pattern to be found.  
 
In spite of the rather simplistic assumption presented in (5.16), AP clusters fare 

well with real data. They can be extracted one-by-one, along with their contribu-
tions to the data scatter (5.15) showing cluster saliencies. These saliencies can be 
used to halt the process when the contribution of the next cluster drops decisively, 
thus leading to an incomplete clustering when needed. 

 
Here are steps of iK-Means(t) where t is the cluster discharge threshold – the 

minimum number of entities in a pattern that can be considered a cluster on its 
own. In most applications dealing with moderately sized data (up to a few hundred 
entities) t can be put to be equal to 1. 

 
iK-Means(t) algorithm 
 

0. Setting. Preprocess and standardize the data set. Take t as the threshold of reso-
lution. Put k=1 and Ik=I, the original entity set. 

 
1. Anomalous pattern. Apply AP to Ik to find k-th anomalous pattern Sk and its 
centroid ck. 

 
2. Test. If Stop-condition (see below) does not hold, remove Sk from Ik to make 
k⇐k+1 and Ik ⇐ Ik–Sk, after which step 1 is executed again.  If it does, go to 3. 

 
3. Discarding small clusters. Remove all of the found clusters containing t enti-
ties or less. Denote the number of remaining clusters by K and re-label them so 
that their centroids are c1, c2, . . ., cK. 

 
4. K-Means. Do Batch K-Means using c1, c2, . . ., cK as initial seeds.

 
The Stop-condition in this method can be any or all of the following: 

(a) All of I has been clustered, Sk=Ik, so that there are no unclustered entities left. 
(b) Large cumulative contribution. The total contribution of the first k clusters to 
the data scatter has reached a pre-specified threshold such as 50 %. 
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(c) Small cluster contribution. Contribution of Sk is too small; for example, it is 
comparable with the average contribution of a single entity, T/N, where T is the 
data scatter. 
(d) Number of clusters, k,  has reached its pre-specified value K. 

 
Condition (a) is reasonable if there are ``natural'' clusters that indeed differ in 

their contributions to the data scatter. Conditions (b) and (c) can be considered as 
related to the degrees of granulation at which the user looks at the data. Unlike (d), 
they appeal to the structure of the data set rather than prior considerations. 
 

Case study 5.5. iK-Means clustering of a normally distributed 1D dataset 
 
Let us generate a one dimensional set X of 280 points generated according to Gaussian 

N(0,10) distribution (see Figure 5.12). This data set is attached in the appendix as Table 
A5.2. Many would say that this sample constitutes a single, Gaussian, cluster. Yet the idea 
of applying a clustering algorithm seems attractive as a litmus paper to capture the pattern 
of clustering implemented in iK-Means algorithm.  

 
In spite of the symmetry in the generating model, the sample is slightly biased to the 

negative side; its mean is -0.89 rather than 0, and its median is about -1.27. Thus the maxi-
mum distance from the mean is at the maximum of 32.02 rather than at the minimum of -
30.27. 

 
The Anomalous pattern starting from the furthest away value of maximum comprises 83 

entities between the maximum and 5.28. Such a stripping goes along real-world conven-
tional procedures. For example, consider the heights of a sample of young males to be 
drafted for a military action whose histogram is known to be bell shaped like Gaussian. 
Those on the either side of the bell shaped height histogram are not quite fitting for action: 
those too short cannot accomplish many a specific task whereas those too tall may have 
problems in closed spaces such as submarines or aircraft.  
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Histogram of a sample of 280 points generated according to N(0,10) distribution.

 
Figure 5.12. Histogram of the sample of 280 values generated by Matlab’s randn com-

mand from the Gaussian distribution N(0,10). 
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The iterative Anomalous pattern clustering would sequentially strip the remaining mar-

gins off too. The set of fragments of the sorted sequence in Table 5.14 that have been found 
by the Anomalous pattern clustering algorithm in the order of their forming, including the 
cluster means and contributions to the data scatter. 

 
The last extracted clusters are all around the mean and, predictably, small in size. One 

also can see that the contribution of a following cluster can be greater than that of the pre-
ceding cluster thus reflecting the local nature of the Anomalous pattern algorithm which in-
tends to find the maximally contributing cluster each time.  The total contribution of the 
nine clusters is about 86% to which the last five clusters contribute next to nothing.   

 
Table 5.14. A summary of the iterative Anomalous pattern clustering results for the sample 
of Gaussian distribution in Table A5.2. Clusters are shown in the extraction order, along 
with their sizes, left and right boundary entity indices, means and contributions to the data 
scatter. 

 
Order of 
extraction 

Size  Left  Right       Mean     Contrib, %        index   index 
 1 83   198   280  11.35 34.28    
 2 70       1     70 -14.32 46.03 

3 47     71   117  -5.40  4.39  
4 41   157   197   2.90  1.11  
5 18   118   135  -2.54  0.38  6 10   147   156   0.27  0.002  7  6    136   141  -1.42  0.039 

 8  2    145   146  -0.49  0.002 
 9  3    142   144  -0.77  0.006 

 

Project 5.1 Using contributions to determine the number of clusters 

The question of determining the stopping rule can be addressed with the model (5.16) it-
self, applied to the cluster contribution values as the raw data. Assume the contributions are 
sorted in the descending order and denoted by hk so that h1≥ h2 ≥ …   (k=1, 2, …).  

 
If one assumes that the first K values are all approximately equal to each other, whereas 

the rest approximate zero, then the optimal K can be derived as follows.  
 
Denote the average of the first K contributions as h(K). Then criterion (5.16) to maxi-

mize is the product Kh2 2(K). The optimal K obviously satisfies inequality Kh (K)> 
(K+1)h2(K+1). Since the average h(K+1) can be expressed as h(K+1)= 
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(K*h(K)+h )/(K+1), the inequality can be easily transformed to h2(K) -2h(K)hK+1 K+1 + 
hK+1

2/K>0 which can be further presented as (h(K) − hK+1)2 > hK+1
2 (1−1/K). Since h(K)≥ 

hK+1, this inequality can be further simplified to h(K)−hK+1 > hK+1√(1−1/K), that is, 

1( ) (1 1 1/ )Kh K h K+> + −                                                                   (5.17) 

which is, roughly, hK+1 < h(K)/2. This has an advantage that the threshold is not pre-
specified but rather determined according to the structure of gaps between the numbers hk in 
their sorted order. The value of K at which (5.17) holds can be considered as a candidate for 
the right number of clusters or components or, in fact, anything evaluated by contributions.  

 
Similar inequalities can be derived at different models for the chosen contribution val-

ues. One may try, for example, the power law assumption that h(k)=ak-b for k=1,…  , K and 
h(k)=0 for k>K. 

  
Method iK-Means utilizes a slightly different strategy for choosing the right K. This 

strategy involves (i) all the anomalous patterns rather than those most contributing, thus in-
volving the patterns close to the reference points too, and (2) a different scoring device – 
the intuitively clear number of entities rather than a purely geometric contribution whose 
intuitive value is unclear.   

Project 5.2. Does PCA clean the data structure indeed: K-Means after PCA 

There is a wide-spread opinion that in a situation of many features, the data structure 
can come less noisy if the features are first “cleaned off” by applying PCA and using a few 
principal components instead of the original features. Although strongly debated by special-
ists (see, for example, Kettenring 2006), the opinion is wide-spread among the practitio-
ners. One of recent attacks against this opinion was undertaken by late A. Kryshtanowski 
(2008) who provided an example of data structure that “becomes less pronounced in the 
space of principal components”.  

 
The example refers to data of two Gaussian clusters, each containing five hundred of 15-

dimensional entities. The first cluster can be generated by the following MatLab com-
mands: 

  
>>b(1:500,1)=10*randn(500,1); 
>>b(1:500,2:15)=repmat(b(1:500,1),1,14)+20*randn(500, 14); 

 
The first variable in the cluster is Gaussian with the mean 0 and standard deviation 10, 
whereas the other fourteen variables add to that another Gaussian variable whose mean and 
standard deviation are 0 and 20, respectively. That is, this set is a sample from a 15-
dimensional Gaussian with a diagonal covariance matrix, whose center is in or near the ori-
gin of the space, with the standard deviations of all features at 22.36, the square root of 
102+202, except for the first one that has the standard deviation of 10.    
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The entities in the second cluster are generated as the next 500 rows in the same matrix in a 
similar manner: 
>>b(501:1000,1)=20+10*randn(500,1); 
>>b(501:1000,2:15)=repmat(b(501:1000,1),1,14)+20*randn(500,14)+10; 

 
The first variable now is centered at 20, and the other variables, at 30. The standard devia-
tions follow the pattern of the first cluster. 
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Figure 5.13: Data of two clusters generated as described above, after centering, are rep-

resented by points on the plane of the two first principal components (on the left); the sec-
ond cluster is represented by circles on the right.  

 
Since the standard deviations by far exceed the distance between centroids, these clus-

ters are not easy to distinguish: see Figure 5.13 illustrating the data cloud, after centering, 
on the plane of the first principal components. 

 
When applying iK-Means to this data, preliminarily centered and normalized by the 

range, the algorithm finds in them indeed much more,13, clusters at the discarding thresh-
old t=1. However, when the discarding threshold is set to t=200, to remove any less popu-
lated anomalous patterns, the method arrives at just two clusters that differ from those gen-
erated by 96 entities (see the very first resulting column in Table 5.15 presenting the results 
of the computation) constituting the total error of 9.6%. The same method applied to the 
data z-score standardized, that is, centered and normalized by the standard deviations, ar-
rives at 99 errors; a rather modest increase, probably due to specifics of the data generation. 

 
Since Kryshtanowsky (2008) operated with the four most contributing principal compo-

nents, we also take the first four principal components, after centering by the means and 
normalizing data by the range: 

 
>>n=1000; br=(b-repmat(mean(b),n,1))./ repmat(max(b)-min(b),n,1); 
>>[zr,mr,cr] =svd(br); 
>> zr4=zr(:,1:4);  
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These four first components bear 66% of the data scatter. We also derived four principal 
components from the data non-normalized (yet centered) and from the data normalized by 
the standard deviations (z-score standardized). The latter is especially important in this con-
text, because Kryshtanowsky (2008) used the conventional form of PCA based on the cor-
relation matrix between the variables, which is equivalent to the model-based PCA applied 
to the data after z-score standardization. The iK-Means method applied to each of these 
data sets at the discarding threshold of 200, has shown rather consistent results (see Table 
5.15). 

 
Table 5.15. Errors of iK-Means clustering at different data transformations: over the 

original data differently normalized and over four principal components derived at different 
data normalizations. 

Data Original 15 features Four principal components 
Normalized by Range St. deviation No  Range Standard 

normalization deviation 
Cluster 1 44 43 37 51 47 
Cluster 2 52 56 47 47 45 
Total 96 99 84 98 92 

 
Overall, these results seem to support the idea of better structuring under principal com-

ponents rather than to refute it. The negative results of using principal components by 
Kryshtanowsky (2008) probably could be attributed to his indiscriminate usage of Batch K-
Means method with random initializations that failed to find a “right” pair of initial cen-
troids, in contrast to iK-Means.  

5.2 Cluster interpretation aids 

P5.2 Cluster interpretation aids: Presentation 

Results of K-Means clustering, as well as any other method resulting in the list 
of clusters S={S1, S2, . . ., SK} and their centroids, c={c1, c2, . . ., cK}, can be inter-
preted  by using   

(a) cluster centroids versus grand means (feature averages on the entire data 
set) 

(b) cluster representatives 
(c) cluster-feature contributions to the data scatter 
(d) conceptual descriptions of clusters 
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One should not forget that, under the zero-one coding system for categories, 
cluster-to-category cross-classification frequencies are, in fact, cluster centroids – 
therefore, (a) includes looking at cross-classifications between S and categorical 
features although this is conventionally considered a separate interpretation de-
vice. 

  
Consider these in turn.  
 

(a) Cluster centroids versus grand means 
 

These should be utilized in both, original and standardized, formats. To express a 
standardized centroid value ckv of feature v in cluster Sk resulting from a K-Means 
run, in the original scale of feature v, one needs to invert the scale transformation 
by multiplying over rescaling factor bv with the follow up adding the shift value 
av, so that this becomes Ckv =bvckv +av. 

 
Worked example 5.6. Centroids of Market town clusters 
 
Let us take a look at centroids of the seven clusters of Market towns data both in real 

and range standardized scales in Table 5.16.  
 
Table 5.16. Patterns of Market towns in the cluster structure found with iK-Means (see 

Table 5.13). For each of the clusters, real values are on the top line and the standardized 
values are in the bottom. 

 
# Pop       PS     Do    Ho    Ba      Su     Pe    DIY    SP    PO   CAB  FM 
1 18484   7.63  3.63  1.13 11.63  4.63  4.13  1.00  1.38  6.38   1.25  0.38 

 0.51     0.38  0.56  0.36  0.38   0.38  0.30  0.26  0.44  0.47   0.30  0.17 
2  5268    2.17  0.83  0.50  4.67  1.83  1.67   0.00  0.50  1.67   0.67  1.00  

-0.10   -0.07 -0.14  0.05  0.02 -0.01 -0.05 -0.07  0.01 -0.12   0.01  0.80 
3  2597    1.17  0.50  0.00  1.22   0.61  0.89  0.00   0.06  1.44    0.11  0.00 

-0.22   -0.15 -0.22 -0.20 -0.16 -0.19 -0.17 -0.07 -0.22 -0.15  -0.27 -0.20  
4 11245   3.67  2.00  1.33  5.33  2.33  3.67  0.67  1.00  2.33   1.33  0.00  

 0.18     0.05  0.16  0.47  0.05  0.06  0.23  0.15  0.26 -0.04   0.34 -0.20  
5  5347    2.50  0.00  1.00  2.00   1.50  2.00  0.00  0.50   1.50   1.00  0.00  

-0.09   -0.04 -0.34  0.30 -0.12 -0.06 -0.01 -0.07  0.01 -0.14   0.18 -0.20 
6  8675    3.80  2.00  0.00  3.20   2.00  2.40  0.00  0.00  2.80   0.80   0.00  

 0.06     0.06  0.16 -0.20 -0.06  0.01  0.05 -0.07 -0.24  0.02   0.08 -0.20 
7  5593    2.00  1.00  0.00  5.00  2.67  2.00   0.00  1.00  2.33   1.00  0.00  

-0.08   -0.09 -0.09 -0.20  0.04  0.10 -0.01 -0.07  0.26 -0.04   0.18 -0.20 
GM 7351.4  3.02  1.38   0.40  4.31 1.93  2.04   0.22  0.49  2.62   0.64   0.20  

 
These show some tendencies rather clearly. For instance, the first cluster appears to be a set 
of larger towns that score 30 to 50% higher than the average on almost all of the 12 fea-
tures. Similarly, cluster 3 obviously relates to smaller than average towns. However, in 
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other cases, it is not always clear what features caused a cluster to separate. For instance, 
both clusters 6 and 7 seem too close to the average to make any real difference at all. 

  
(b)   Cluster representative 

 
A cluster is typically characterized by its centroid consisting of the within-cluster 
feature means. Sometimes, the means make no sense – like the number of suppli-
ers 4.5 above. In such a case, it is more intuitive to characterize a cluster by its 
“typical” representative.  This is especially appealing when the representative is a 
well known object. Such an object can give much better intuition to a cluster than 
a logical description in situations in which entities are complex and the features 
are superficial. This is the case, for instance, in mineralogy where a class of min-
erals can be represented by its “stratotype” mineral, or in art studies where a gen-
eral concept such as “surrealism” can be represented by an art object such as a 
painting by S. Dali. 
 
A cluster representative must be the nearest to its cluster's centroid. An issue is 
that two different expressions for K-Means lead to two different measures. The 
sum of entity-to-centroid distances W(S,c) in (5.3) leads to the strategy that can be 
referred to as  ``the nearest in distance.'' The sum of entity-to-centroid inner prod-
ucts for B(S,c) in (5.8) leads to the strategy ``the nearest in inner product''. Intui-
tively, the choice according to the inner product follows tendencies represented in 
ck towards the whole of the data expressed in grand mean position whereas the 
distance follows just ck itself. These two principles usually lead to similar choices, 
though sometimes rather not. 
  
Worked example 5.7. Representatives of Company clusters 
 
Consider, for example, A product cluster in Company data as presented in Table 5.17: The 
nearest to centroid in distance is Ant and nearest in inner product is Ave. 
 
Table 5.17. Standardized entities and centroid of cluster A in Company data. The nearest to 
centroid are: Ant, in distance, and Ave, in inner product (both are in thousandth). 

Cluster    Income SharP NSup EC Util Indu Retail Distance InnerPr 

 0.10       0.12 -0.11 -0.63  0.17 -0.02 -0.14   Centroid 
222 -0.14 -0.22  0.36 -0.63 -0.33   0.23 -0.20 Ave 524 

521 -0.14 -0.22  0.36 -0.63  0.00   0.05  0.40 Ant 186 
386 310 -0.14  0.36 -0.22 -0.63  0.00   0.09  0.08 Ast 

 
To see why is that, let us take a closer look at the two companies. Ant and Ave are similar 
on all four binary features. Each is at odds with the centroid’s tendency on one feature only: 
Ant is zero on NSup while centroid is negative, and Ave is negative on Income while cen-
troid is positive on that. The difference, however, is in feature contributions to the cluster; 
that of Income is less than that of NSup, which makes Ave to win, as a follower of NSup, 
over the inner product expressing contributions of entities to the data scatter. With the dis-
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tance measure, the cluster tendency by itself does not matter at all because it is expressed in 
the signs of the standardized centroid. 
 
Q.5.21. Find representatives of Company clusters B and C. 
 

(c) Feature-cluster contributions to the data scatter 
 
To see what features do matter in each of the clusters, the contributions of feature-
cluster pairs to the data scatter are to be invoked. The feature-cluster contribution 
is equal to the product of the  squared feature (standardized) centroid component 
and the cluster size. In fact, this is proportional to the squared difference between 
the feature’s grand mean and its within-cluster mean: the further away the latter 
from the former, the greater the contribution! This is illustrated on Figure 5.14: 

x 

y 

 
Figure 5.14 Contributions of features x and y in the group of blank-circled points 
are proportional to the squared differences between their values at the grand mean 
(large star) and within-group centroid (small star).  
 
Worked example 5.8. Contributions of features to Market town clusters 
 
Table 5.18. Decomposition of the data scatter over clusters and features at Market town 
data; row Exp sums up all the cluster contributions, row Total gives the feature contribu-
tions to the data scatter, and row Unexp is the difference, Total-Exp. 

 
# P     PS    Do    Ho   Ba   Su   Pe    DIY   SP   PO  CAB FM Total Total,%  

2.09 1.18 2.53 1.05 1.19 1.18 0.71 0.54 1.57 1.76 0.73 0.24 14.77   35.13 1  
0.06 0.03 0.11 0.01 0.00 0.00 0.02 0.03 0.00 0.09 0.00 3.84   4.19     9.97  2  
0.86 0.43 0.87 0.72 0.48 0.64 0.49 0.10 0.85 0.39 1.28 0.72   7.82   18.60 3  
0.10 0.01 0.07 0.65 0.01 0.01 0.16 0.07 0.20 0.00 0.36 0.12   1.75     4.17  4  
0.02 0.00 0.24 0.18 0.03 0.01 0.00 0.01 0.00 0.04 0.06 0.08   0.67     1.59  5  
0.02 0.02 0.12 0.20 0.02 0.00 0.01 0.03 0.30 0.00 0.03 0.20   0.95     2.26  6  
0.02 0.02 0.03 0.12 0.00 0.03 0.00 0.02 0.20 0.00 0.09 0.12   0.66     1.56  7  

Exp 3.16 1.69 3.96 2.94 1.72 1.88 1.39 0.79 3.11 2.29 2.56 5.33  30.81  73.28    
Unexp 0.40 0.59 0.70 0.76 0.62 0.79 1.02 0.96 1.20 0.79 1.52 1.88  11.23  26.72  
Total 3.56 2.28 4.66 3.70 2.34 2.67 2.41 1.75 4.31 3.07 4.08 7.20  42.04 100.00  
 
The cluster-specific feature contributions are presented in Table 5.18, along with their total 
contributions to the data scatter in row Total. The intermediate rows Exp and Unexp show  
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the explained and unexplained parts of the totals, with Exp being the sum of all cluster-
feature contributions and Unexp the difference between the Total and Exp rows. 
 
The columns on the right show the total contributions of clusters to the data scatter, both as 
is and per cent. The cluster structure in total accounts for 73.3% of the data scatter, a rather 
high proportion. Of the total contributions, three first clusters have the largest ones totaling 
to 26.78, or 87% of the explained part of the data scatter, 30.81. Among the variables, FM 
gives the maximum contribution to the data scatter, 5.33. This can be attributed to the fact 
that FM is a binary variable on the data set – binary variables, in general, have the largest 
total contributions because they are bimodal. Indeed, FM’s total contribution to the data 
scatter is 7.20 so that its explained part amounts to 5.33/7.20=0.74 which is not as much as 
that of, say, the Population resident feature, 3.16/3.56=0.89, which means that overall 
Population resident better explains the clusters than FM. 

 
Worked example 5.9. Contributions and relative contributions of features at 
Company clusters 

 
Consider the clustering of Companies data according to their main product, A or B or C, 

to find out what features can be associated with each of the clusters. The cluster centroids 
as well as feature-cluster contributions are presented in Table 5.19. The summary contribu-
tions over clusters are presented in the last column of Table 5.19, and over features, in the 
first line of third row of Table 5.19 termed “Explain”. The feature contributions to the data 
scatter, that is, the sums of squares of the feature’s column entries, are in the second line of 
the third row – these allow us to express the explained feature contributions per cent, in the 
third line.  

 
Table 5.19. Centroids and feature-to-cluster contributions for product clusters in Company 
data.  

 
Item      Income SharP NSup EC Util Indu Retail Total 

Cluster  
centroids  
standardized 

A 
B 
C 

 0.10    
-0.21 
 0.18 

 0.12 
-0.29 
 0.24 

-0.11 
-0.22 
 0.50 

-0.63 
 0.38 
 0.38 

 0.17 
-0.02 
-0.22 

-0.02 
 0.17 
-0.22 

-0.14 
-0.14 
 0.43 

 

Cluster  
contributions 

A 
B 
C 

0.03 
0.14 
0.06 

0.05 
0.25 
0.12 

0.04 
0.15 
0.50 

1.17 
0.42 
0.28 

0.09 
0.00 
0.09 

0.00 
0.09 
0.09 

0.06 
0.06 
0.38 

1.43 
1.10 
1.53 

Total  
contributions 

Ex 
Data 
Ex% 

0.23 
0.74 
31.1 

0.41 
0.69 
59.4 

0.69 
0.89 
77.5 

1.88 
1.88 
100.0 

0.18 
0.63 
28.6 

0.18 
0.63 
28.6 

0.50 
0.50 
100.0 

4.06 
5.95 
68.3 

Relative  
contribution  
indexes, % 

A 
B 
C 

16.7 
101.2 
31.7 

29.5 
191.1 
67.0 

18.5 
90.2 
219.5 

258.1 
120.2 
58.5 

59.9 
0.0 
56.7 

0.0 
77.7 
56.7 

49.5 
64.2 
297.0 

 

Cluster  
centroids  
real 

 24.1  
18.73  
25.55 

39.23 
22.37 
44.10 

2.67 
2.33 
4.50 

0.00 
1.00 
1.00 

0.67 
0.33 
0.00 

0.33 
0.67 
0.00 

0.00 
0.00 
1.00 
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Now we can take a look at the most contributing feature-to-cluster pairs. This can be 
done by considering relative contributions within individual lines (clusters) or within indi-
vidual columns (features). For example, in the third row of Table 5.19, each contribution 
that covers half or more of the explained contribution by the feature is highlighted in bold. 
Obviously, the within-line maxima do not necessarily match those within columns. The 
relative contribution indexes in the fourth row of Table 5.19 combine these two perspec-
tives: they are ratios of two relative contributions: the relative explained feature contribu-
tion within a cluster to the relative feature contribution to the data scatter. For example, 
relative contribution index of feature ShareP to cluster B, 1.911, is found by relating its 
relative explained contribution 0.25/1.10 to its relative contribution to the data scatter, 
0.69/5.95. Those of the relative contribution indexes that are greater than 150%, so that the 
feature contribution to the cluster structure is at least 50% greater than its contribution to 
the data scatter, are highlighted. 
        The most contributing features are those that make the clusters different. To see this, 
Table 5.19 is supplemented with the real values of the within-cluster feature means, in its 
last row. The values corresponding to the outstanding contributions are highlighted in bold. 
Cluster A differs by feature EC – A-listed companies do not use e-commerce; cluster B dif-
fers by the relatively low Share Prices; and cluster C differs by either the fact that it all falls 
within Retail sector or the fact that its companies have relatively high numbers of suppliers, 
4 or 5. It is easy to see that each of these statements not only points to a tendency but dis-
tinctively describes the cluster as a whole. 

 
Case-study 5.6. 2D analysis of most contributing features  
 
Consider 2D analysis of the relationship between the Company data partition in three prod-
uct classes, A, B, and C, and the most contributing of the quantitative features in Table 5.19 
– the Number of suppliers (77.5%) as illustrated in Table 5.20. 
 
To calculate the correlation ratio of the NSup feature according to formula (    ), let us first 
calculate the average within-class variance 2

uσ =(3*0.22+3*.022+2*0.25)/8=0.23; the cor-

relation ratio then will be equal to η 2 2( ) /u
2σ σ σ−2 = =(1.00-0.23)/1.00=0.77. According 

to (5.13), this, multiplied by N=8 and σ2=1, must be equal to the total explained contribu-
tion of feature NSup to the data scatter in Table 5.21, 0.69 – which is clearly not! Why? 
Because the correlation ratio in (5.13) refers to the standardized, not original feature, and to 
make up for this, one needs to divide the result by the squared scaling parameter, the range 
which is 3 in this case. Now we get things right: η2*N/r2=0.77*8/9=0.69 indeed!  
 
Table 5.20. Tabular regression of NSup feature over the product-based classes in the Com-
pany dataset in Table 4.2.  

Classes              # NSup mean NSup variance 
A                       3 2.67 0.22 
B                       3 2.33 0.22 
C                       2 4.50 0.25 

                             
Total                 8 3.00 1.00 
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The case of a nominal feature can be analyzed similarly. Consider contingency table be-
tween the product based partition S and feature Sector in Company data (Table 5.19).  
  
Table 5.21. Contingency table between the product-based classes and nominal feature Sec-
tor in the Company dataset according to Table 4.1. 
 
   Category Utility   Industrial   Retail Total 
 Class 
 A    2             1               0 3 
 B    1             2               0 3 
 C    0             0               2 2 
 Total    3             3               2 8 
 
In contrast to the classical statistics perspective, the small and even zero values are not of 
an issue here. Table 5.22 presents, on the left, the same data  in the relative format; the 
other two parts present absolute and relative Quetelet indexes as described in section 2.3. 
 
Table 5.22. Relative frequencies together with absolute and relative Quetélet indexes for 
contingency table 5.21. 

Cat. Utility Indust. Retail Total Utility  Indust   Retail Utility   Indust  Retail 
Class Relative frequencies Absolute Quetélet ind. Relative Quetélet ind. 
A   0.25   0.12    0.00 0.37    0.29    -0.04     -0.25   0.78       -0.11     -1.00 
B   0.12   0.25    0.00 0.37   -0.04     0.29     -0.25  -0.11        0.78     -1.00 
C   0.00   0.00    0.25 0.25   -0.38    -0.38      0.75  -1.00      -1.00       3.00 
Total   0.37   0.37    0.25 1.00   

 
 
These indexes have something to do with the cluster-feature contributions in Table 5.19. 
Given that the categories have been normalized by unities as well as the other features, the 
absolute Quetélet indexes are  
 
Table 5.23. Absolute Quetélet indexes from Table 5.22 and their squares factored accord-
ing to formula (5.14). 
 

Cat. Size Utility  Industrial   Retail Utility   Industrial   Retail    Total  
Class Absolute Quetélet indexes                   Contributions 

 0.085     0.002       0.062     0.149 A 3    0.29    -0.04       -0.25 
 0.002     0.085       0.062     0.149 B 3   -0.04     0.29       -0.25 
 0.094     0.094       0.375     0.563 C 2   -0.38    -0.38        0.75 

Total 8   0.181     0.181       0.500     0.862 
involved. [To use the relative Quetélet indexes, the categories have to be normalized by the 
square roots of their frequencies, as explained in the Formalization part.] Their squares 
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multiplied by the cluster cardinalities and additionally divided by the squared rescaling pa-
rameter, 3 in this case, are the contributions, according to formula (5.14), as presented in 
the following Table 5.23. 
 
Obviously, all entries in the right part of Table 5.23 are items in the total Proportional pre-
diction index (5.16) divided by 3 – because of the specifics of the data normalization with 
the additional normalization by the square root of the number of categories. 
 

(d) Conceptual description of clusters 
 

If a contribution is high, then, as can be seen on Figure 5.14, it is likely that the 
corresponding feature can be utilized for conceptual description of the correspond-
ing class. 
 
Worked example 5.10. Describing Market town clusters conceptually 
 
Consider, for example, Table 5.18 of contributions of the clusters found at Market towns 
data. Several entries in Table 5.18 are highlighted in bold as those most contributing to the 
data scatter parts explained by clusters, the columns on the right. Take a look at them, clus-
ter-wise. 
 
Cluster 1 is indeed characterized by its two most contributing features, Population resident 
(P, contribution 2.09) and the number of doctor surgeries (Do, contribution 2.53). It can be 
described as a “set of towns with the population resident P not less than 10200 and number 
of doctor surgeries Do not less than 3” – this description perfectly fits the cluster with no 
errors, be it false positive or false negative. Cluster 2 is blessed with an unusually high rela-
tive contribution of FM, 3.84 of the total 4.19; this may be seen as the driving force of the 
cluster’s separation: it comprises all the towns with a Farmers market that have not been in-
cluded in cluster 1! Other clusters can be described similarly. Let us note the difference be-
tween clusters 6 and 7, underlined by the high contributions of swimming pools (SW) to 
both, though by different reasons: every town in cluster 7 has a swimming pool whereas 
any town in cluster 6 has none. 
 
Worked example 5.11. Describing Company clusters conceptually 
 
Conceptual descriptions can be drawn for the product clusters in Company data according 
to Table 5.19. This Table shows that feature EC is the most contributing to the Product A 
cluster, feature ShaP  to the Product B cluster, and features SupN and Retail to the Product 
C cluster. The relatively high contribution of ShaP to B cluster is not that obvious because 
that of EC, 0.42, is even higher. It becomes clear only on the level of relative contributions 
when the contributions are related to their respective Total counterparts, 0.25/0.69 and 
0.42/1.88 – the former prevails indeed. Clusters A, B, and C can be distinctively described 
by the statements “EC==0”, “ShaP < 28”, and “SupN >3” (or “Sector is Retail”), respec-
tively.  
 
Unfortunately, high feature contributions not always lead to clear-cut conceptual descrip-
tions. The former are based on the averages whereas the latter on clear-cut divisions, and 
division boundaries can be at odds with the averages. 
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F5.2 Cluster interpretation aids: Formulation 

2According to (5.4) and (5.5), clustering (S,c) decomposes the scatter T(Y)=Σ i,v yiv  
of data matrix Y in the explained and unexplained parts, B(S,c) and W(S,c), respec-
tively. The latter is the square-error K-Means criterion, whereas the explained part 
B(S,c) is clustering’s contribution to the data scatter, which is equal, according to 
(5.6), to 
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explained part, the total contribution of v to the cluster structure. This can be dis-
played as a Scatter Decomposition (ScaD) table whose rows correspond to clus-
ters, columns to variables and entries to the contributions BBkv (see Table 5.24). 
  
Table 5.24. ScaD: Data scatter decomposed over clusters and features using nota-
tion introduced above 
 

  f        f 
 
 
 
 
 
 
 
 
 
 
The summary rows, Explained, Unexplained and Total, as well as column Total 
can be expressed  as percentages of  the data scatter T(Y). The contributions high-
light relative roles of features both at individual clusters and in total. 
 
The explained part B(S,c) is, according to (5.6), the sum of contributions of indi-
vidual feature-to-cluster pairs B Bkv= ckv 

2Nk  which can be used for interpretation of 

Feature 
Cluster 

1 2                             f Total M

  BS1
S2
 
SK

11     B12                          B BB1M B1+
  B21     B22                          B BB2M B2+
   

    B                           B  B BK1 K2 BKM BK+
  BExplained 

Unexplained 
Total 

+1     B+2                         B B(S,c) B+M
W(S,c)   W+1   W+2                         W+M
T(Y)   T1       T2                            TM
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the clustering results. The sums of BkvB ’s over features or clusters express total con-
tributions of individual clusters or features into the explanations of clusters.  

 
As has been shown in section 3.4.2, summary contributions of individual data fea-
tures to clustering (S,c) have something to do with statistical measures of associa-
tion in bivariate data, such as correlation ratio η2 (2.10) in section 2.2 and chi-
squared X2 (2.13) in section 2.3 (Mirkin 2005). In fact, the analysis in section 
F.3.4.2 applies in full to the case when target features are those used for building 
clustering S. 
 
Specifically, for a quantitative feature v represented by the standardized column 
yv, its summary contribution  BB

v

+v  to the data scatter is equal to   
 

2 2
v vB Nσ η+ =                                        (5.18)                                             

 
Note that the correlation ratio in (5.18) has been computed over the normalized 
feature yv. The correlation ratio of the original non-standardized feature xv differs 
from that by factor equal to the squared rescaling parameter b2

v .  
 
Consider now a nominal feature v represented by a set of binary columns, dum-
mies, corresponding to individual categories l∈v. The grand mean of binary col-
umn for v∈F is obviously the proportion of this category in the set, p+v. To stan-
dardize the column, one needs to subtract the mean, p+v, from all its entries and 
divide them by the scaling parameter, bv. After the standardization, the centroid of 
cluster Sk can be expressed through co-occurrence proportions too as expressed in 
formula (3.17): 

( )kv
kv v v

k

p                               / b
p += −c p  

where pkv  is the proportion of entities falling in both category v and cluster Sk; the 
other symbols: p is the frequency of v, p the proportion of entities in S+v k k, and bv 
the normalizing scale parameter. 
According to equations (3.18) and (3.19), the summary contribution of all pairs 
category-cluster (l,k) is equal to   
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2
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= ∑∑ )                                                      (5.19) 

 
This is akin to several contingency table association measures considered in the 
literature including Pearson chi-squared X2 in (2.13) and Gini impurity function, 
or summary absolute Quetelet index, in (2.22) . To make B(v/S) equal to the chi-
squared coefficient, the scaling of binary features must  be done by using 

lb = lp , which is the standard deviation of the so-called Poisson probabilistic 
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distribution that randomly throws plN unities into an N-dimensional binary vector. 
To make B(v/S) equal to Gini impurity function, no normalization of the dummies 
is to be done, or rather the recommended option of normalization by ranges ap-
plies since the range of a dummy is 1. 
 

One should not forget the additional normalization of the binary columns by 
the square root of the number of categories in a nominal feature v, | |v  leading to 
both the individual contributions BBkv in (5.18) and the total contribution B(v/S) in 
(5.19) divided by the number of categories |v|. When applied to Pearson chi-
squared, the division by |v| can be considered as another normalization of the coef-
ficient. As mentioned in section 2.3, the maximum of Pearson chi-squared (related 
to N) is min(|v|,K)-1. Therefore, when |v|≤K, the division would lead to a normal-
ized index whose values are between 0 and 1-1/|v|. If, however, the number of 
categories is larger so that K<|v|, then the normalized index could be very near 0 
indeed. In this regard, it should be of interest to mention that in the literature some 
other normalizations have been considered. Specifically, Pearson chi-squared is 
referred to as Cramer coefficient if related to min(|v|,K)-1, and as Tchouproff co-
efficient if related to (| | 1)( 1)v K− −   (Kendall and Stewart 1973).  

 
Q.5.22. Prove that, for any cluster k in K-Means clustering,  

2 2| | (
k

iv k kv kv
i S

y S c 2 )σ
∈

= +∑ . 

Q.5.23. How one should interpret the normalization of a category by the 
vp ? 

What category gets a greater contribution: that more frequent or that less frequent? 
 

Comment 5.1. 
 
When the chi-squared contingency coefficient or related indexes are applied in the 
traditional statistics context, the presence of zeros in a contingency table becomes 
an issue because it contradicts the hypothesis of statistical independence. In the 
context of data recovery clustering, zeros are treated as any other numbers and 
create no problems at all because the coefficients are measures of contributions 
and bear no other statistical meaning in this context. 
 
Comment 5.2.  

 
K-Means advantages: The method 

i   Models typology building activity 
ii  Computationally effective both in memory and time 
iii Can be utilized incrementally, ``on-line'' 

     iv  Straightforwardly associates feature salience weights with feature scales 
     v  Applicable to both quantitative and categorical data and mixed data provided  
         that care has been taken of the relative feature scaling 
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     vi Provides a number of interpretation aids including cluster prototypes and  
       features and entities most contributing to cluster specificity. 
K-Means issues: 

vii Simple convex spherical shape of clusters. 
viii Choosing the number of clusters and initial seeds. 
ix   Instability of results with respect to initial seeds. 
 

Although conventionally considered as shortcomings, issues vii-ix can be benefi-
cial too. To cope with issue vii, the feature set should be chosen carefully. Then 
the simple shape of a cluster will provide for a simpler conceptual description of 
it. To cope with issue viii, the initial seeds should be selected not randomly but 
rather based on preliminary analysis of the substantive domain or using anomalous 
approaches Build or AP. Another side of issue ix is that solutions are close to pre-
specified centroids, which is good when the centroids have been chosen carefully.  

 
Q.5.24. Find SCAD decomposition for the product clusters in Company data. A. 
This is in Table 5.25. Table 5.25 shows feature EC as the one most contributing to 
the Product A cluster, feature ShaP  to the Product B cluster, and features SupN 
and Retail to the Product C cluster. The relatively high contribution of ShaP to B 
cluster is not that obvious because that of EC, 0.42, is higher. It becomes clear 
only on the level of relative contributions relating the absolute values to their re-
spective Exp counterparts, 0.25/0.41 and 0.42/1.88 – the former prevails indeed. 
Clusters A, B, and C can be distinctively described by statements “EC==0”, “ShaP 
< 28”, and “SupN >3” (or “Sector is Retail”), respectively.  

 
Table 5.25. Decomposition of the data scatter over product clusters in Company 
data; notations are similar to those in Table 5.18. 
 

Product Income ShaP SupN EC  Util  Indu  Retail  Total  Total % 
A 
B 
C 

0.03   0.05 0.04 1.17 0.00 0.09  0.06   1.43  24.08  
0.14   0.25 0.15 0.42 0.09 0.00  0.06   1.10  18.56  
0.06   0.12 0.50 0.28 0.09 0.09  0.38   1.53  25.66  

Exp 
Unexp 
Total 

0.23   0.41 0.69 1.88 0.18 0.18  0.50   4.06  68.30  
0.51   0.28 0.20 0.00 0.44 0.44  0.00   1.88  31.70  
0.74   0.69 0.89 1.88 0.63 0.63  0.50   5.95 100.00  

5.3 Extension of K-Means to different cluster structures 

So far the clustering was to encode a data set with a number of clusters forming 
a partition. Yet there can be differing partition-like clustering structures of which, 
arguably, the most popular are: 
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I  Fuzzy: Cluster membership of entities may be not necessarily con-
fined to one cluster only but shared among several clusters; 

II Probabilistic: Clusters can be represented by probabilistic distribu-
tions rather than manifolds; 

III Self-Organizing Map (SOM): Capturing clusters within cells of a 
plane grid along with the grid’s neighborhood structure. 

 
Further on in this section extensions of K-Means to these structures are presented. 

5.3.1 Fuzzy K-Means clustering 

A fuzzy cluster is represented by its membership function z=(zi), i∈I, in which 
zi (0≤ zi ≤1) is interpreted as the degree of membership of entity i to the cluster. 
This extends the concept of conventional, hard (crisp) cluster, which can be con-
sidered a special case of the fuzzy cluster corresponding to membership zi re-
stricted to only 1 or 0 values.  

 
A conventional (crisp) cluster k (k=1,…,K) can be thought of as a pair consisting 
of centroid ck=(ck1,…, ckv,…, ckV) in the V feature space and membership vector 
zk=(z ,…, c1k ik,…, c ) over N entities so that zNk ik =1 means that i belongs to cluster 
k, and zik =0 means that i does not. Moreover, clusters form a partition of the en-
tity set so that every i belongs to one and only one cluster if and only if  Σk zik = 1 
for every i∈I. 

 
These are extended to the case of fuzzy clusters, so that fuzzy cluster k (k=1,…,K) 
is a pair comprising centroid ck=(ck1,…, ckv,…, ckV), a point in the feature space, 
and membership vector zk=(z ,…, c1k ik,…, cNk) such that all its components are be-
tween 0 and 1, 0 ≤ zik ≤ 1, expressing the extent of belongingness of i to each of 
the clusters k. Fuzzy clusters form what is referred to as a fuzzy partition of the 
entity set, if the summary membership of every entity i∈I is unity, that is, Σkzik = 1 
for each i∈I. One may think of the total membership of any entity i as a substance 
that can be differently distributed among the centroids. 

 
 
 
 
 
 
 
 
Figure 5.15. Possible trapezoid fuzzy sets corresponding to fuzzy concept of 

man’s height: short, regular, and toll. 

μ(x) 
  

       160                     175                      190                         x 
   Short                 Medium                           Toll 
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These concepts are especially easy to grasp if membership zik is considered as 
the probability of belongingness. However, in many cases fuzzy partitions have 
nothing to do with probabilities. For instance, dividing all people by their height 
may involve fuzzy categories ``short,'' ``medium'' and ``tall'' with fuzzy meanings 
such as those shown in Figure 5.15. 

 
Fuzzy clustering can be of interest in applications related with natural fuzziness 

of cluster boundaries such as image analysis, robot planning, geography, etc. 
 
If fuzzy cluster memberships are put into the bilinear PCA model, as K-Means 
crisp memberships have been (see formula (5.12) in section F5.1.1), they make a 
rather weird structure in which centroids are not average but rather extreme points 
in their clusters, which can be relaxed in a certain way and make clusters appeal-
ing, if somewhat unusual (Nascimento 2005).  
 
An empirically convenient criterion (5.20) below differently extends that of (5.3) 
where d( , ) is Euclidean squared distance, by factoring in an exponent of the 
membership, zα. The value α affects the fuzziness of the optimal solution: at α=1, 

the optimal memberships are proven to be crisp,
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Globally minimizing criterion (5.20) is a difficult task. Yet the alternating minim
zation of it appears rather easy. As usual, this works in iterations starting, from
somehow initialized centroids. Each iteration proceeds in two steps: (1) given 
cluster centroids, cluster memberships are updated; (2) given memberships, cen
troids are updated – after which everything is ready for the next iteration. The 
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Since equations (5.21) and (5.22) are the first-order optimality conditions for crite-
rion (5.20) leading to unique solutions, convergence of the method, usually re-
ferred to as fuzzy K-Means (c-means, too, assuming c is the number of clusters, 
see Bezdek et al. 1999), is guaranteed. 
 

Yet the meaning of criterion (5.20) has not been paid much attention to until 
recently. It appears, criterion F in (5.20) can be presented as F=Σi F(i), the sum of 
weighted distances F(i) between points i∈I and cluster centroids, so that  F(i) is 
equal to the harmonic average of the individual memberships at α=2 (see Stan-
forth, Mirkin, Kolossov, 2007, where this fact is used for the analysis of domain of 
applicability for predicting toxicity of chemical compounds). Figure 5.16 presents 
the indifference contours of the averaged F values versus those of the nearest cen-
troids. The former look much smoother. 
 

The Anomalous pattern method is applicable as a tool for initializing Fuzzy K-
Means as well as crisp K-Means, leading to reasonable results as reported by Stan-
forth, Mirkin, Kolossov, 2007. Nascimento and Franco (2009) applied this method 
for segmentation of sea surface temperature maps; found fuzzy clusters closely 
follow the expert-identified regions of the so-called coastal upwelling, that are 
relatively cold, and nutrient rich, water masses. In contrast, the conventional fuzzy 
K-Means, with user defined K, under- or over-segments the images. 
 
 
 
 
 
 
 
 
 
Figure 5.16. Maps of the indifference levels for the membership function F(i) at 
about 14000 chemical compounds clustered with iK-Means in 41 clusters (a); (b) 
scores membership using only the nearest cluster’s centroid. 

 
Q.5.25. Regression-wise clustering. In general,  centroids ck can be defined in a 
space which is different from that of the entity points yi (i∈I). Such is the case of 
regression-wise clustering. Recall that a regression function xV=f(x1, x2, ..., xV-1) 
may relate a target feature, xV, to (some of the) other features x1, x2, ..., xV-1 as, for 
example, the price of a product to its consumer value and production cost attrib-
utes. In regression-wise clustering,  entities are grouped together according to the 
degree of their correspondence to a regression function rather than according to 
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their closeness to the gravity center. That means that regression functions play the 
role of centroids in regression-wise clustering (see Figure 5.17). 

                                     

 
Figure 5.17. Two regression-wise clusters with their regression lines as centroids. 

 
Consider a version of Straight K-Means for regression-wise clustering to involve 
linear regression functions relating standardized variable yV to other standardized 
variables, y1, y2, ..., yV-1, in each cluster. Such a function is defined by the equation  
yV=a1y1+a2y2+...+ aV-1yV-1 + a0 for some coefficients a0, a1,..., aV-1. These coeffi-
cients form a vector, a=(a0, a1,...,aV-1), which can be referred to as a regression-
wise centroid.  

 
When a regression-wise centroid is given, its distance to an entity point yi=(yi1,..., 
yiV) is defined as r(i,a)= (yiV – a1yi1 – a2yi2 - ... – aV-1yi,V-1 – a0)2, the squared differ-
ence between the observed value of yV and that calculated from the regression 
equation. To determine the regression-wise centroid a(S), given a cluster list S⊆I, 
the standard technique of multivariate linear regression analysis is applied, which 
is but minimizing the  within cluster summary residual Σi∈S r(i,a) over all possible 
a.  

 
Formulate a version of the Straight K-Means for this situation. 

 
Hint: Same as Batch K-Means, except that:  

(1) centroids must be regression-wise centroids and  
(2)  the entity-to-centroid distance must be r(i,a). 
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5.3.2 Mixture of distributions and EM algorithm 

Data of financial transactions or astronomic observations can be considered as 
a random sample from a (potentially) infinite population. In such cases, the data 
structure can be analyzed with probabilistic approaches of which arguably the 
most radical is the mixture of distributions approach. 

 
According to this approach, each of the yet unknown clusters k is modeled by a 

density function f(x, αk) which represents a family of density functions over x de-
fined up to a parameter vector αk. Consider a one-dimensional density function 
f(x), that, for any x and very small change dx, assigns its probability f(x)dx to the 
interval between x and x+dx, so that the probability of any interval (a,b) is integral 

, which is the area between x-axis and f(x) within (a,b) as illustrated on 

Figure 5.18 for interval (5,8). Multidimensional density functions have a similar 
nterpretation.  
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Figure 5.18. Two Gaussian clusters represented by their density functions 

drawn with a thin and bold lines, respectively. The probability of interval (5,8) in 
the bold line cluster is shown by the area with diagonal filling. The interval (A,B) 
is the only place in which the thin line cluster is more likely than the bold line 
cluster. 

  A                  B

 
Usually, the cluster density f(x, αk) is considered uni-modal with the mode cor-

responding to the cluster standard point. Such is the normal, or Gaussian, density 
function defined by αk consisting of its mean vector mk and covariance matrix Σk: 
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The shape of Gaussian clusters is ellipsoidal because any surface at which f(x, 

αk) is constant satisfies equation (x-mk)TΣk
-1(x-mk)=c, where c is any constant, that 

defines an ellipsoid. This is why the PCA representation is highly compatible with 
the assumption of the underlying distribution being Gaussian. The mean vector mk 
specifies the k-th cluster's location.  

 
The mixture of distributions clustering model can be set as follows. The row 

points y1, y2, ..., yN are considered a random sample of |V|-dimensional observa-
tions from a population with density function f(x) which is a mixture of individual 

cluster density functions f(x, αk) (k=1,2, ..., K) so that , 
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∑k ≥0 are the mixture probabilities such that =1.  

To estimate the individual cluster parameters, the principle of maximum likeli-
hood, one of the main approaches in mathematical statistics, applies. The approach 
is based on the postulate that the events that have really occurred are those that are 
most likely. In general, this is not correct – everybody can recall a situation in 
which a less likely event has occurred. But the principle, applied for parameter es-
timation, is as much effective as a similarly wrong principle of the maximum par-
simony, and even more. In its simplest version, the approach requires to find  the 
mixture probabilities pk and cluster parameters αk, k=1, 2, ..., K, by maximizing 
the likelihood of the observed data under the assumption that the observations 
come independently from a mixture of distributions. It is not difficult to show, un-
der the assumption that the observations come independenly of each other, that the 

likelihood is the product of the density values, . To 

computationally handle the maximization problem for P with respect to the un-
known parameter values, its logarithm, L=log(P), is maximized in the form of the 
following expression: 
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where gik is the posterior density of  cluster k defined as gik= pk f(yi, α )/Σk k pkf(yi, 
α ). k

 
Criterion L can be considered a function of two groups of variables:  

(1) the mixture probabilities pk and cluster parameters αk, and  
(2) posterior densities gik,  



 311 

to apply the method of alternating optimization. The alternating maximization al-
gorithm for this criterion is referred to as EM-algorithm since computations are 
performed as a sequence of Expectation (E) and Maximization (M) steps. As 
usual, to start the process, the variables must be initialized. Then E-step is exe-
cuted: Given pk and αk, optimal gik are found. Given gik, M-step finds the optimal 
pk and αk. This brings the process to an E-step again to follow by an M-step. And 
so forth. The computation stops when the current parameter values approximately 
coincide with the previous ones. This algorithm has been developed, in various 
versions, for Gaussian density functions as well as for some other parametric 
families of probability distributions. It should be noted that developing a fitting 
algorithm is not that simple, and not only because there are too many parameters 
here to estimate. One should take into consideration that there is a tradeoff be-
tween the complexity of the probabilistic model and the number of clusters: a 
more complex model may fit to a smaller number of clusters. To select a better 
model one can utilize the likelihood criterion penalized for the complexity of the 
model. A popular penalized log-likelihood criterion is referred to as Bayesian In-
formation Criterion (BIC) and is defined, in this case, as  

 
BIC= 2 log p(X/ pk, αk) – λlog(N),                                       (5.25) 

 
where X is the observed data matrix, λ the number of parameters to be fitted, and 
N the number of observations, that is, rows in X. The greater the value, the better. 
BIC analysis has been shown to be useful, for example, in assessing the number of 
clusters K for the mixture of Gaussians model.  

 
The goal of EM algorithm is determining the density functions rather than as-

signing entities to clusters. If the user needs to see the “actual clusters”, the poste-
rior probabilities gik can be utilized: i is assigned to that k for which gik is the 
maximum. Since this “optimal assignment” rule deviates from the distribution of 
gik, the proportions of entities in clusters obtained in this way will deviate from the 
mixture probabilities pk. This is why it is advisable to consider the relative values 
of gik as fuzzy membership values. 

 
The situation, in which all Gaussian clusters have their covariance matrices 

constant diagonal and equal to each other, so that Σk =σ2E, where E is identity ma-
trix and σ2 the variance, is of a theoretical interest. In this case, all clusters have 
uniformly spherical distributions of the same radius. The maximum likelihood cri-
terion P in this case is equivalent to the criterion of K-Means and, moreover, there 
is a certain homology between the EM and Batch K-Means algorithms in this case. 

 
To see what is going on here, consider feature vectors corresponding to entities 

xi, i∈I,  as randomly and independently sampled from the population, with an un-
known assignment of the entities to clusters Sk. The likelihood of this sample is 
determined by the following equation: 
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It is not difficult to see from the first-order optimality conditions for L that, given 
partition S={S , S1 2,…, SK}, the optimal values of mk and σ are determined accord-
ing to the usual formulas for the mean and the standard deviation. Moreover, 
given m and σ,  the partition S={Sk 1, S2,…, S K} maximizing L will simultaneously 
minimize the double sum in the right part of its expression above, which is exactly 
the summary squared Euclidean distance from all entities to their centroids, that is, 
criterion W(S,m) for K-Means in (5.3) except for a denotation: the cluster gravity 
centers are denoted here by mk rather than by ck, which is not a big deal after all.   . 

 
Thus the mixture model leads to the conventional K-Means method as a 

method for fitting the model, under the condition that all clusters have spherical 
Gaussian distribution of the same variance. This leads some authors to conclude 
that K-Means is applicable only under the assumption of such a model. However, 
this conclusion is wrong because it involves a logic trap: it is well known that the 
fact that A implies B does not necessarily mean that B implies A – there are plenty 
of examples to the opposite. Note however that the K-Means data recovery model, 
also leading to K-Means, assumes no restricting hypotheses on the mechanism of 
data generation. It also implies, through the data scatter decomposition, that useful 
data standardization options should involve dividing by range or similar range-
related indexes rather than by the standard deviation, associated with the spherical 
Gaussian model. In general, the situation here is similar to that of the linear re-
gression, which is a good method to apply when there is a Gaussian distribution of 
all variables involved, but it can and should be applied under any other distribu-
tion of observations if they tend to lie around a straight line.   

5.3.3 Kohonen’s self-organizing maps SOM 

Kohonen’s Self-Organizing Map is an approach to visualize the data cluster 
structure by explicitly mapping it onto a plane grid. Typically, the grid is rectan-
gular and its size is determined by the user-specified numbers of its rows and col-
umns, r and c, respectively, so that there are r×c nodes on the grid. Each of the 
grid nodes, gk (k=1, 2, ..., rc), is one-to-one associated with the so-called model, or 
reference, vector mk which is of the same dimension as the entity points yi, i∈I.  
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The grid has a neighborhood structure which is to be set by the user. In a typi-
cal case, the neighborhood Gk of node gk is defined as the set of all the grid nodes 
whose path distance from gk is less than a pre-selected threshold value (see Figure 
5.19).  
 
 
 
 
 
 
 
 
 
 
 
Figure 5.19. A 7×12 SOM grid on which nodes g1 and g2 are shown along with 
their neighborhoods defined by thresholds 1 and 2, respectively. 
 
Then each mk is associated with some data points – a process that can be reiter-
ated. In the end, data points associated at each mk are visualized at the grid point gk 
(k=1,…, rc) (see Figure 5.20). Historically, all SOM algorithms have been set in 
an incremental manner as neuron networks do, but later, after some theoretical in-
vestigation, straight/ batch versions appeared, such as the following.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.20. A pattern of final SOM structure using entity labels of geometrical 
shapes. 
 
Initially, vectors mk are initialized in the data space either randomly or according 
to an assumption of the data structure such as, for instance, centroids of K-Means 
clusters found at K=rc. Given vectors mk, entity points yi are partitioned into 
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“neighborhood” sets Ik. For each k=1, 2,…, rc, the neighborhood set Ik is defined 
as consisting of those yi that are assigned to mk according to the Minimum distance 
rule. Given sets Ik, model vectors mk are updated as centers of gravity of all entities 
yi assigned to grid nodes in the neighborhood of gk, that is, such yi that i∈It for 
some gt∈Gk.  Then a new iteration of building Ik with the follow-up updating mk’s, 
is run. The computation stops when new mk are close enough to the previous ones 
or after a pre-specified number of iterations. 
 
As one can see, SOM in this version is much similar to Straight/Batch K-Means 
except for the following:  

(a) number K=rc of model vectors is large and has nothing to do with the 
number of final clusters – this comes visually as the number of grid clusters; 

(b) data points are averaged over the grid neighbourhood, not the feature 
space neighborhood; 

(c) there are no interpretation rules except according to positioning of 
points on the grid . 

Item (a) results in the fact that many of final Ik’s are empty, so that relatively 
very few of grid nodes are populated, which may create a powerful image of a 
cluster structure that may go to a deeper – or more interesting – minimum than K-
Means, because of (b).  

5.4 Summary 

This Chapter is devoted to K-Means, arguably the most popular clustering 
method. The method partitions the entity set into clusters along with centroids rep-
resenting them. It is very intuitive and usually does not require that much space to 
get presented, except of course its various versions such as incremental or nature 
inspired or medoid based algorithms. This text also includes less popular subjects 
that are important when using K-Means for real-world data analysis:  

• Presentation and analysis of examples of its failures 
• Innate tools for interpretation of clusters 
• Reformulations of the criterion that could yield different algorithms for 

K-Means 
• Initialization – the choice of K and location of centroids       

 
Three modifications of K-Means onto different cluster structures are presented 

as well. These are: Fuzzy K-Means for finding fuzzy clusters, Expectation-
Maximization (EM) for finding probabilistic clusters as items of a mixture of dis-
tributions, and Kohonen self-organizing maps (SOM) that tie up the sought clus-
ters to a visually comfortable two-dimensional grid.  
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Abstract    

Hierarchical clustering builds a binary hierarchy on the entity set.  
The Chapter’s material explains an algorithm for agglomerative clustering and 

two different algorithms for divisive clustering, all three based on the same square 
error criterion as K-Means partitioning method. Agglomerative clustering starts 
from a trivial set of singletons and merges two clusters at a time. Divisive cluster-
ing splits clusters in parts and should be a more interesting approach computation-
ally because it can utilize fast splitting algorithms and, also, stop splitting when-
ever  it seems right. One divisive algorithm proceeds with the conventional K-
Means at K=2 utilized for splitting a cluster. The other maximizes summary asso-
ciation coefficient to make splits conceptually, that is, using one feature at a time. 
The last section is devoted to the Single Link clustering, a popular method for ex-
traction of elongated structures from the data. Relations between single link clus-
tering and two popular graph-theoretic structures, the Minimum Spanning Tree 
(MST) and connected components, are explained.    
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6.1 General 

Term hierarchy can mean different things in different contexts. Here it is a deci-
sion tree nested structure drawn like that on Figure 6.1 below (see also Figures in 
section 3.5). Such a hierarchy may relate to mental or real processes such as  

(a) conceptual structures (taxonomy, ontology); 
(b) genealogy; or 
(c) evolutionary tree. 

 
The top node, referred to as the root, represents all the entity set I under considera-
tion. Every interior node of the hierarchy has a number of children nodes repre-
senting division of the subset – or cluster – represented by the node into smaller 
clusters. The terminal nodes that have no children are referred to as leaves and 
usually correspond to singletons. A hierarchical structure should be annotated to 
reflect the correspondence between the nodes and entity sets. Such an annotation, 
according to bases of division was utilized in classification trees of section 3.5. In 
clustering, another annotation is frequently used – that imposed by the leaf con-
tents. Every node of the tree corresponds to cluster of those entities that annotate 
the leaves descending from the node.  
 
 

 
AV  AN   AS   BA  BR    BU  CI     CY

A B C

Figure 6.1. A cluster hierarchy of Company data entities: nested node clusters, 
each comprising a set of leaves. Cutting the tree at a certain height leads to a parti-
tion of the three product clusters here. 
 
On the right of the hierarchy on Figure 6.1, there is a y-axis to represent the node 
heights. The node height is a useful device for positioning nodes in layers. Typi-
cally, all leaves have zero heights whereas the root is assigned with the maximum 
height, usually taken as unity or 100%. Some hierarchies are naturally assigned 
with node heights, e.g., the molecular clock in evolutionary trees, some not, e.g. 
the decimal classification of library subjects.  But to draw a hierarchy as a figure, 
one needs to define positions for each node, thus its height as well, even if implic-
itly.  
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Nodes may be linked by using what is called edges. Only one edge ascends from 
each node – this is a defining property of nested hierarchies that each node, except 
for the root, has one and only one parent. Each hierarchy node, or its parental 
edge, represents cluster of all leaves descending from the node; such are the edges 
labeled by product names A, B, and C on Figure 6.1 – they represent the corre-
sponding clusters. These clusters have a very special pattern of overlapping: for 
any two clusters of a hierarchy, their intersection is either empty or coincides with 
one of them – this is one more characteristic property of a nested hierarchy. 
 
The tree on Figure 6.1 has one more specific property – it is binary: each interior 
node in the tree has exactly two children, that is, split in two parts. Most clustering 
algorithms, including those presented below, do produce binary trees, along with 
node heights.  
 
Q.6.1. Given a binary hierarchy H with leaf set I, prove that the number of edges 
in the hierarchy is 2(|I|-1). 
 
Q.6.2. Consider a binary hierarchy H with node set J and height function h(j), j∈J, 
such that h(j)=0 at each leaf j. Assume that h(j) is monotone, that is, the closer the 
node to the root the greater the value of h(j). Define the distance u(i1,i2) between 
each pair of leaves i1,i2∈I as the height of the least cluster node j(i1,i2) such that 
both i1 and i2 are among its descendants, u(i1,i2)=h(j(i1,i2)). Prove that the dis-
tance u is an ultrametric, that is, it is not only symmetric, u(i1,i2)=u(i2,i1), and re-
flexive, u(i1,i1)=0, but also satisfies ultrametric inequality  
 
  u(i1,i2) ≤ max [u(i1,i3), u(i2,i3)]                                  (6.1) 
 
for every triplet of leaves i1,i2, and i3. 
 
Q.6.3. Prove that if distance u is ultrametric then, for each three entities, the three 
distances between them satisfy the following property: those two larger ones are 
equal to each other. This can be rephrased as follows: under an ultrametric, every 
triangle is isosceles. 
 
Q.6.4. Define Baire distance b(x,y) between non-coinciding real numbers x and y, 
both located in interval [0,1], as follows. Consider their decimal digits, x=0.x1x2… 
and y=0.y1y2…, and set b(x,y)=2-n where n is the very first digit at which xn≠yn. If, 
for example x=0.125, y=0.128 and z=0.250, then b(x,y)=2-3 and b(x,z)=2-1 
(Murtagh et al. 2008). Prove that Baire distance is ultrametric and, moreover, 
every finite ultrametric can be represented as Baire metric. 
 
Methods for hierarchic clustering are divided in two classes: 
 
  - Divisive methods: they build a cluster hierarchy by proceeding top-to-bottom, 
starting from the entire data set and recursively splitting clusters into parts; and 
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  - Agglomerative methods: they build a cluster hierarchy by proceeding bottom-
up, starting from the least clusters available, usually singletons, and merging those 
nearest to each other at each step. 

6.2 Agglomerative clustering and Ward’s criterion 

P6.2 Agglomerative clustering: Presentation 

At each step of an agglomerative clustering algorithm a set of already formed 
clusters is considered along with the matrix of distances between maximal clusters 
S1, S2, …, SK. These maximal clusters form a partition of the entity set I. At the 
step, two nearest maximal clusters are merged and the newly formed cluster is 
supplied with its height and distances to other clusters. The process ends, typi-
cally, when all clusters have been merged into the universal root cluster consisting 
of the entire entity set. 
 
Worked example 6.1. Agglomerative clustering of Company dataset 
 
Consider the Company dataset. The starting point of the algorithm is the set of singletons – 
eight clusters consisting of one entity each. Squared Euclidean distances between the corre-
sponding rows of the standardized data matrix are presented in Table 5.9 in section 5.1.4), 
which is reproduced here as Table 6.1.  
 
Table 6.1. Distances between standardized Company entities from Table 5.9. For the sake 
of convenience, row-wise non-diagonal minima are highlighted in bold. 
 

Entities Ave    Ant    Ast     Bay    Bre    Bum   Civ     Cyb  
0.00   0.51   0.88   1.15   2.20   2.25   2.30   3.01 Ave  
0.51   0.00   0.77   1.55   1.82   2.99   1.90   2.41 Ant  
0.88   0.77   0.00   1.94   1.16   1.84   1.81   2.38 Ast  
1.15   1.55   1.94   0.00   0.97   0.87   1.22   2.46 Bay  
2.20   1.82   1.16   0.97   0.00   0.75   0.83   1.87 Bre  
2.25   2.99   1.84   0.87   0.75   0.00   1.68   3.43 Bum  
2.30   1.90   1.81   1.22   0.83   1.68   0.00   0.61 Civ  
3.01   2.41   2.38   2.46   1.87   3.43   0.61   0.00    Cyb  

In each of these, the height of the merged cluster can be accepted to be equal to the distance 
between the clusters being merged, h=0.51. Since other distances cannot be less than that, 
the rule guarantees the monotonicity of the height over further mergers. 
 
The minimum distance is d(Ave, Ant)=0.51, which leads us to merging these singletons 
into a doubleton {Ave, Ant}. Now we have 7 clusters of which only one, that merged, is 
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new. To do further agglomeration steps, we need to define distances between the merged 
cluster and the others. This can be done in many ways  
 
Table 6.2 Distances between the merged cluster and the others according to different rules. 
 

Initial clusters Ave    Ant    Ast     Bay   Bre    Bum  Civ    Cyb      
{Ave} 0.00   0.51   0.88   1.15   2.20   2.25   2.30   3.01  
{Ant} 0.51   0.00   0.77   1.55   1.82   2.99   1.90   2.41  

 Merged       Method    
   

                  NN     *        *      0.77    1.15   1.82  2.25   1.90   2.41 
{Ave, Ant}     FN     *        *      0.88    1.55   2.20  2.90   2.30   3.01  
                       AN    *        *      0.82    1.35   2.01  2.68   2.10   2.71   

 
including those based only on the distances in Table 5.9, such as the Nearest Neighbor 
(NN), also termed Single Linkage, or Farthest Neighbor (FN), also termed Complete Link-
age, or the Average neighbor (AN), also termed Average Linkage. These utilize the mini-
mum distance or maximum distance or the average distance, respectively (see Table 6.2). 

 
Q.6.5. Complete the process of building cluster hierarchies according to the Near-
est Neighbor rule, Farthest Neighbor rule, and Average Neighbor rule (Table 6.2).  

 
Ward’s criterion 
 
Consider a partition S={S1, S2, …, SK} arrived at on an agglomeration step. Ac-

cording to Ward’s rule the distance between two clusters, Sk, Sl, is defined as the 
increase in the value of K-Means criterion W(S,c) at the partition obtained from S 
by merging them into Sk∪Sl. As shown in equations (6.2) and (6.3) further on, the 
increase can be computed as the so-called Ward distance between centroids of the 
two clusters: the usual squared Euclidean distance scaled by a factor whose nu-
merator is the product of cardinalities of the clusters and denominator is the sum 
of them. Note that Ward distance between singletons is just half the squared 
Euclidean distance between the corresponding entities. 

Ward’s agglomeration starts with singletons whose variance is zero and pro-
ceeds by merging those clusters that effect as small increase in the square-error 
criterion as possible, at each agglomeration step. This justifies the use of Ward 
agglomeration results to get a reasonable initial setting for K-Means when K is 
preset. The two methods, K-Means and Ward, supplement each other in that clus-
ters are carefully built with Ward agglomeration, whereas K-Means allows over-
coming the inflexibility of the agglomeration process over individual entities by 
reshuffling them. There is an issue with this strategy though: Ward agglomeration, 
unlike K-Means, is a computationally intensive method, not applicable to large 
sets of entities. 

 
Worked example 6.2. Ward algorithm with distances only 
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Let us apply Ward agglomerative algorithm to Company data. In spite the fact that Ward 
distance is defined as the weighted distance between centroids in (6.3), it can also be com-
puted, within each recursive agglomeration step by using only the distance matrix – which 
is provided by formula (6.4). Moreover, the cluster heights defined as within-cluster square 
errors, that, is deviations from the centroid, can be computed by using distances only using 
formula (6.5). That means we can run the entire agglomeration process by using only the 
distance matrix in Table 6.1. The only thing to be taken into account that it is a matrix of 
squared Euclidean distances which is to be halved to become a matrix of Ward distances. 

The minimum value in the matrix is 0.51/2 so that the first merger is to be {Ave, Ant}. 
To compute the distance between that and, say, entity Bay, according to formula (6.4),  
Ward distances between the merger’s parts and Bay are weighted by the summary cardinal-
ities of the corresponding clusters, which are both 2 in this case, and summed up: 
2*(1.15/2) + 2*(1.55/2) = 2.70, after which the Ward distance between the merger’s parts, 
0.51/2, multiplied by the singleton Bay’s cardinality, is subtracted: 2.70-0.26=2.44. The re-
sult is related then to the summary cardinality of the merged cluster and singleton Bay, that 
is, 3, to obtain 2.44/3=0.81. The Ward distances from the merged clusters to the rest, com-
puted in this way, are presented in Table 6.3.  Of course the distance matrix changes from 
an agglomeration step to another by dynamically recomputing the distances as described 
above. 
 
The height of the merged cluster is taken to be its squared error, which coincides with the 
original distance 0.51 between Ave and Ant.  

 
Table 6.3. Ward distances between the merged cluster and the others according to Ward’s 
rule. 

Initial clusters Ave    Ant    Ast     Bay    Bre    Bum   Civ     Cyb        
{Ave} 0.00   0.26   0.44   0.58   1.10   1.12   1.15   1.56 
{Ant} 0.26   0.00   0.38   0.78   0.91   1.54   0.95   1.20 

Merged          Method    
  

{Ave, Ant}       Ward’s    *        *     0.46    0.82   1.26  1.66   1.31   1.72  
                 

 
 
After the first merger, the minimum distance is between Civ and Cib, 0.31, followed by the 
distance between Bre and Bum, 0.38. The distance matrix, after these mergers, will be as  

 
Table 6.4. Ward distances between clusters after three mergers 
 
 Clusters Ave+Ant    Ast      Bay    Bre+Bum   Civ+Cyb 
     0.00       0.46      0.82        2.00          2.12 Ave+Ant 
     0.46       0.00      0.97        0.87          1.27 Ast 
     0.82       0.97      0.00        0.49          1.10 Bay      2.00       0.86      0.49        0.00          1.62 

Bre+Bum      2.12       1.27      1.10        1.62          0.00    
Civ+Cyb 
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presented in Table 6.4. The minimum values highlighted in bold indicate mergers to do at 
further agglomeration steps. 

 
The hierarchy on Figure 6.2 reflects these agglomeration steps and values of the within-

cluster error height function. The height of the root, under this definition, is equal to the 
data scatter so that all the  
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Figure 6.2. Hierarchy produced by applying Ward agglomerative clustering algorithm to 
Company data. The node heights are cluster squared errors that are scaled as percentages of 
the pre-processed data scatter. 
 
heights can be expressed as proportions of the data scatter. The total data scatter is 
the sum of all distances in Table 6.1 divided by their number, 8, that is 11.89. 
Note, this time the original distances are taken rather than Ward distances – ac-
cording to formula (6.5). The product based clusters have much smaller within 
cluster errors, 1.44 for A, 1.73 for B, and 0.61 for C, thus constituting 12.1%, 
14.5%, and 5.1% of the data scatter, respectively. This is reflected in the cluster 
heights on Figure 6.2.  The merged A+B cluster’s error is 7.22 making its height 
60.7%. Such a drastic rise is due to the super-additive property (6.2′) of the cluster 
error: it not only sums up the heights of the merged clusters but also adds Ward 
distance between them.  

 
The hierarchy may drastically change if a different feature scaling system is 

applied. For example, with the standard deviation based standardization (z-
scoring), the two product C companies do not constitute a single cluster but are 
separately merged within the product A and B clusters. 
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Q.6.6. Complete agglomeration steps according to Ward distance matrix in Table 
6.4. 

F6.2 Square-error criterion and Ward distance: Formulation 

Consider a partition S={S1, S2,…, SK} on set I, together with centroids c={c1, c2,…, 

cK}, and the square error criterion W(S,c}= of K-Means. Let two 

of the clusters, S
1

( , )
k

K

k
k i S

d i c
= ∈

∑∑
f, Sg, be merged so that the resulting partition is S(f,g) coinciding 

with S except for the merged cluster Sf∪Sg; the new centroid obviously being 
cf∪g= (Nfcf + Ngcg )/(Nf+N ), where Ng f and Ng are cardinalities of clusters Sf and Sg, 
respectively. As proven previously – and rather evident indeed (see Figure 6.3)  –  
the value of square error criterion on partition S(f,g) is greater then W(S,c). But 
how much greater? The answer is  

 2( , ) ( , ) ( ) ( ,f g f g )f g f g fv gv f g
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the squared Euclidean distance between centroids of the merged clusters Sf and Sg  
weighted by a factor proportional to the product of cardinalities of the merged 
clusters (Ward, 1963).  

                                                                       
Figure 6.3. The distances in criterion W(S,c) before (solid lines) and after the 

merger (dashed lines) of two clusters on the upper right. The numbers of dashed 
and solid lines are the same, but the dashed-line distances are longer overall. 

 
To prove this, let us follow the definition and do some elementary transforma-

tions. First, we notice that the distances within unchanged clusters do not change 
in the partition S(f,g) so that the difference between the values of criterion W 
is  2 2

,( ) ( ) (
f g f g
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which completes the proof of equation (6.2). 

ighted distance  
 
The we
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+
                                              (6.3)           

is referred to as Ward distance between clusters. Its weight coefficient highly de-
pends on the distribution of entities between clusters being merged. This may af-
fect the results of agglomerative or divisive algorithms that utilize Ward distance
Indeed, in an agglomerative process, the Ward distance between clusters to be 
merged must be as small as possible – which favors merging big and small clus-
ters. On the other hand, in divisive clustering, when splitting, the Ward distance 
between split parts must be as large as possible, which favors splitting large clus-
ters into relatively equal-siz

                   

. 

ed parts. It is the effect of this weighting that underlies 
on of 

Given a cluster S with its centroid c, let us denote the square error within S 
S d y c

∈

=

the odd behavior of the square error K-Means criterion noted in the discussi
Figure 5.8 at section 5.1.1. 
 

by ( )W ( , )i
i S
∑ . Using this, equation (6.2) can be rewritten as 
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         ( ) ( ) ( ) ( , )f g f g f gW S S W S W S dw S S∪ = + + .                          (6.2′) 
This explains the additive properties of the square error W(S) when used as the 
height index in drawing the clustering tree.  According to this equation, the height
of the parent is equal to the sum of heights of its children plus Ward distance be-
ween them. This warrants a speci

 

fic heights distribution over the tree: the closer 

lculated from 
ist din  t followin

d(Sf∪g, k)= [(Nf k)wd f, Sk) + kwd(S g)]/(Nf  Nk).     
   (6.4) 

k

t
to the root, the longer the edges! 
 

. 6.7. Prove that Ward distance after a merger can be recursively caQ
the d ances before the merger accor g o the g formula: 
 

 Sw
 

+N (S (Ng+N )wd(Sk g, S )− N f,S  +Nk g +
                               

 
Q.6.8. Prove that the square error of cluster (Sk, ck), ( ) ( , )

k

k i
i S

W S d y c
∈

= ∑ , can be 

pressed in terms of within cluster d
 

 

and Nk is the number of entities in Sk. 
Hi

ntroids neither for calculating Ward dis-
tances nor for the cluster’s square errors. 

C6.2 Agglomerative clustering: Computation 

imities – then a similarity maximum should be taken rather than a 
mi

 between them and form a list of maximal clusters including all the sin-

ex istances only: 

, ki j S

wh re d is the squared Euclidean distance 

( ) ( , ) / .k i j kW S d y y N
∈

= ∑     (6.5)

e
nt: Use equation (5.9) in section 5.1.1. 
 
Equations (6.4) and (6.5) allow carrying Ward’s agglomeration process by us-

ing only the distances, using the cluster ce

All agglomerative clustering algorithms follow the same scheme. They trans-
form the original matrix of dissimilarity indexes between them into a binary clus-
ter hierarchy. The dissimilarities can be virtual, that is, computed on the fly from 
other data such as entity-to-feature data. Also, they can be expressed as similari-
ties or prox

nimum. 
 
Agglomerative clustering 
 

1. Initial setting.  Make all entities k∈I to form singleton clusters Sk={k}, with 
their cardinalities set to unity and heights to zero; form a matrix of dissimilarities 
D=(d(k,l))
gletons. 
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2. Finding minimum. Find the minimum d(f,g) in D. 

 
3. Clusters update. Two maximal clusters, Sf and Sg, that are closest to each 
other, are merged together to form their parent, a new maximal cluster Sf∪g=Sk∪Sk. 
The new cluster’s cardinality is defined as Nf∪g = Nf + Ng,  with the height com-
puted accordingly. (Usually, the height is taken to be equal to d(f,g). In Ward clus-
ter , h ∪  = h  + h  + wd(f,g).) Clusters S  , S  are removed from the list of maxi-

date. Remove rows and columns f and g from D; put in a new row 
and column of distances between new cluster S  and the remaining maximal 

 2.  

6. 

e merged cluster and the other maximal clusters is defined. A very general 
for overing many a method has been proposed by Lance and Williams 
(1967): 

        

ing f g f g f g
mal clusters. 

  
4. Distance up

f∪g
clusters.  

 
5.Stop condition. If the number of maximal clusters is larger than 1, go to step

 
Output: the set of all clusters along with their heights. Draw a cluster tree. 
 
This algorithm remains a scheme unless a method for computing distances be-

tween th
mula c

  
( , ) ( , ) ( , ) ( , ) | ( , ) ( , ) | .f gd k f g d k f d k g d f g d k f d k gα α β γ∪ = + + + − (6.6) 

 
Values of coefficients for some popular methods are presented in Table 6.5. One 
of the methods, popular in bioinformatics, is referred to as UPGMA (Unweighted 
Pair Group Method with Arithmetic Means): the dissimilarity between two clus-
ter

able 6.5. Lance-Williams coefficients for some popular agglomerative clus-
tering 

 

linkage 

A 
 

Ward 

 

(N  +N )/(N  + N +N )  (N  +N )/(N  + N +N )     

s is defined as the average distance between all entities of the two. 
 
T

methods. 

Method 
Single linkage 

αf                              α g                       β                    γ 
½                               ½                        0                   -½  

  
 ½                              ½                        0                    ½    Complete 

 
 N  /(N  +N )       N /(N  + N )               0                

 
UPGM f f g g f g      0 

 
f k f g k f k f g k

                                            (N  +Nf k)/(N  + Nf g+Nk)    0 
 

From the computational point of view, there are two weak points in the algorithm. 
One of them concerns the operation of finding the minimum on Step 2, which is 
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computationally intensive. This, however, can be softened a bit by some prior 
computations such as finding the nearest neighbor for each entity or when the dis-
similarity measure satisfies some conditions that allow to limit the search span or 
by imposing some neighborhood structure so that the search is constrained within 
the neighborhoods only (Murtagh 1985). The other point concerns the storage 
room for dissimilarity matrix D. Its size is quadratic on the number of entities so 
that a thousand strong sample would relate to half a million dissimilarities and a 
ten thousand strong set would require memory for fifty million dissimilarities. One 
of the approaches to tackle the problem would be keeping the data in the original 
format, such as entity-to-feature table, and computing dissimilarities on the fly, 
only when needed. This could be at odds with the need to find the minimum dis-
similarities by comparing them. Another tackle, using a part of the data only with 
a f  extending the results is in a very early stage of experimental develop-

Q.6.9. Formulate a version of agglomerative clustering for Ward criterion using 
the definition of Ward distance with centroids. 

6.3 Divisive and conceptual clustering 

P6

ponding to split parts. The splitting 
pro es on so that each time, a leaf cluster is split which is reflected in an-
oth

 
T  the following: 

ecides to stop the splitting. 
Let r some options that can be recommended based on some theoretical 
and/or ex  this sequence. 

ollow-up
ments. 

 

.3 Divisive clustering: Presentation 

A divisive method works in a top-down manner, starting from the entire data 
set and splitting each cluster in two, which is reflected in drawing the split cluster 
as a parental node with two children corres

cess go
er node with two children sprung from it. 

o specify a method of divisive clustering, one should define
(i)   splitting criterion – how one decides which split is better; 
(ii)   splitting method – how the splitting is actually done; 
(iii)   choice of cluster – which of the current leaf clusters is to be split; 
(iv)   stopping criterion – at what point one d

 us cove
perimental evidence, in

 
(i) Splitting criterion 
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The only splitting criterion that is considered here is K-Means criterion of the 
summary square error which is implemented as Ward-like criterion, that is the 
maximum possible reduction in the total squared error caused by the split: the 
gre

nty” in the distribution of possible feature values that 
is captured by the concepts like Gini index, entropy, variance, etc. (see detail in 

 
clu tering criterion at the conventional zero-one coding of categories along with 
different ata, as explained in section 3.5.2 and section 6.2. 

For War
 

A. 
to 

e 

ard distance between split parts, the divisive algo-
rithm utilizing Two-splitting is referred to as Ward-like divisive al-

 
B. 

hi-
 

a corresponding normalization option (see section 3.5). In this as-

ater the better.  
 
When applied to categorical features represented by their categories enveloped 

into the corresponding binary features, this criterion can be reinterpreted in terms 
of what is referred to a goodness-of-split criterion, which usually measures the 
improvements in the predictability of the categories, from the split partition. The 
“predictability” can be measured differently, most frequently by involving the 
general concept of “uncertai

sections 1.2, 1.3, 3.5, 6.2).  
 

Three popular goodness-of-split criteria that are compatible with the least-squares 
data recovery framework are: (a) impurity function (Breiman et al. 1984), (b) 
category utility function (Fisher 1987), and (c) the  summary Pearson chi-squared 
coefficient. The category utility function, in fact, is the sum of impurity functions 
over all categories in the data, related to the number of clusters in the partition be-
ing built. All the three can be expressed in terms of the cluster-category contribu-
tions to the data scatter and, thus, amount to be special cases of the square-error

s
 normalizations of the d

 
(ii) Splitting method 

 
d’s criterion, we consider two splitting approaches: 

K-means at K=2, or Two-splitting – this is a popular option, fre-
quently referred to as Bisecting K-Means; this leads, typically, 
good results if care is taken to find good initial centroids. Since th
criterion of bisecting K-Means is equivalent to the criterion of 
maximizing W

gorithm here. 

Conceptual clustering – in this, just one of the features is involved in 
each of the splits, which leads to a straightforward conceptual inter-
pretation of all the clusters. Conceptual clustering builds a cluster hi-
erarchy by sequentially splitting clusters, as all divisive algorithms 
do, yet here each of the splits uses a single attribute in contrast to the 
classic clustering that utilizes distances involving all of them. The 
criteria such as summary impurity function or summary Pearson c
squared are part of the Ward-like divisive clustering algorithm under
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pect, conceptual clustering should be equated to building classifica-
tion trees over a multiple target feature set – the only difference is 
that the very same target features are simultaneously input features! 

ii) Choice of cluster to split 

e unexplained part, 
that clu se square-error is maximum is to be split first. 

v) Stopping criterion  

ts projections to the first principal component has no min-
im inside the range. 

ase study 6.1. Divisive clustering of Companies with two-splitting 

o 8 than to 6 as easily seen in Table 6.1. This partition is at 
odds with the product clusters.  

ompany dataset in this 
Chapter, let us use Build algorithm which relies on distances only.  

 
(i
 

The order of splitting conventionally is not considered important: if the set is di-
vided all the way down to singletons, then the order does not much matter indeed. 
If, however, the goal is to produce a partition by finishing after just a few splits, 
then Ward’s criterion gives the following guiding principle: after each split, all 
leaf clusters Sk are supplied with their square errors W(Sk). The square-error is the 
contribution to the unexplained data scatter, that is, the sum of Euclidean squared 
distances between cluster’s entities and its centroid, which is proportional to the 
cluster summary variance weighted by its size. To minimize th

ster who
 
(i
 

Conventionally, the divisions stop when there remains nothing that can be split, 
that is, when all the leaves are singletons. Yet for the Ward’s criterion one can 
specify a threshold on the value of the square-error at a cluster, the level of 
“noise” reached by W(Sk) at which a cluster is considered next to noise and not 
split anymore because of that. This threshold can be set as a proportion of the data 
scatter, say 5%. Another criterion of course can be just the cluster size – say, clus-
ters whose cardinality is less than 1% of the original data size are not to be split 
anymore.  Tasoulis et al. (2010) propose a cluster to stop splitting when the den-
sity of the cluster poin

a 
 
C
 
Consider the Ward-like divisive clustering method for the Company data, range stan-

dardized with the follow-up rescaling the dummy variables corresponding to the three Sec-
tor categories in Table 5.1. Using Two-splitting algorithm may produce a rather poorly re-
solved picture if the most distant entities, 6 and 8 according to the distance matrix in Table 
6.1, are taken as the initial seeds. Then step 2 would produce tentative clusters {1,3,4,5, 6} 
and {2,7,8} because 2 is nearer t

 
Unfortunately, no further iterations can change that. This shows that the choice of the 

initial seeds at the two farthest entities can be not that good an option that it may seem to 
be. Usage of Build or Anomalous pattern algorithms, explained in section 5.1.5, could lead 
to better results. Because of our reluctance in using the original C
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According to distance data in Table 6.1, entity 5 is medoid there since the sum of its dis-
tances to the rest, 9.6, is the minimum.  Now we form a cluster around each entity to consist 
of those that are nearer to the entity than to medoid 5: these will be 2 and 3 around 1, 1 and 
3 around 2, 1 and 2 around 3, 7 and 8 around each other, and clusters for entities 4,5,6 are 
singleton themselves. This would give an edge to entity 1 as the next seed, because it is fur-
ther away from 5 and surrounded by two. Indeed the summary E value for 1, 2.20+(1.82-
0.51)+(1.16-0.88)=3.79 is by far the greatest. Using the entities 5 and 1 as seeds, indeed 
brings the bisecting K-Means to a desired split {1, 2, 3} versus {4,5,6,7,8}. The hierarchy 
on Figure 6.2 then will be found with further splits. The node heights are the same – within 
clu  squared errors that are scaled as percentages of the pre-processed data scatter. 

nomalous cluster versus two-split cluster 
                             

ster
 
Case study 6.2. A

60

−40 −30 −20 B 0  A 10 20 30 40 
0

10

20

30

40

50

 
Figure 6.4. Histogram of the one dimensional sample of 280 entities from N(0,10) distribu-
tion. Points A and B denote the boundaries of the right and left anomalous fragments found 
with the Anomalous pattern algorithm.  

rt of the table shows results found with an incremental ver-

 
Consider 280 values generated according to the one dimensional Gaussian distribution 

N(0,10) with zero mean and standard deviation equal to 10 (see Table A5.2), presented on 
Figure 6.4 and try divide it in two clusters. When it is done with a splitting criterion, the di-
vision goes just over the middle, cutting the bell-shaped curve in two equal halves. When 
one takes Anomalous clusters, though, the divisions are much different: first goes a quarter 
of the entities on the right (to the right of point A on Figure 6.4), because the right end in 
this individual sample is a bit farther from the mean than the left one; then a similar chunk 
to the left of point B, etc. (see case study 5.4 in section 5.1.6). Yet if one uses the anoma-
lous clusters in iK-Means, just as an initial centers generator, things differ. With the dis-
carding threshold of 60, only two major Anomalous patterns found in the beginning remain. 
Further 2-Means iterations bring a rather symmetric solution reflected in the leftmost part 
of Table 6.6. The right hand pa
sion of Two-splitting method. 
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This leads to a slightly different partition, with three entities swapping their membership, 
which is slightly better, achieving 65.4% of the explained scatter versus 64.8% at iK-
Means. This once again demonstrates that the incremental taking into account entities is a 
mo

able 6.6.  Two-class partitions found using different strategies. A better result by the 
incre wo-sp uted to its one edure.  

 

, is presented in it by one col-
umn only while having two categories – “Yes” and “No”. These two are represented in the 

s “EC+” and “EC−”, respectively. 

Table 6.7. Digit dataset 

igure 0.2 and turn the figure into a 
dataset by considering each of the seven rectangle edges a feature with two categories, 
“P ent” and “Absent” (see Figure 6.5 an ble 6.7). 

Cluster 
d,% 

g 
d, % 

1 139     7.63            32.6 136        7.82         26.8 
144       -9.12        38.6 

0 1      1      1      0      1      1      1   

re precise option than the all-as-one switching in iK-Means.  
 
T

mental T litting should be attrib -by-one entity moving proc

iK-Means with t=60 Incremental Two-splittin
Size    Mean     Explaine Size     Mean    Explaine

2 141    -9.30            32.1 
 
Let us now turn to conceptual clustering. 
 

Case study 6.3. Conceptual clustering of Digit data as related to Ward clus-
tering 
As shown in section 3.5.2, divisions over individual features – the essence of conceptual 
clustering procedures –  are governed by the square error criterion if conventional measures 
for scoring association between dataset features and the partition – impurity index or Pear-
son chi-squared – are applied. Yet these theoretical derivations assume all of the categories 
represented by corresponding dummies, which makes us slightly modify the Company 
dataset, because one of the features, “Electronic commerce”

data Table 6.7 by column
 

  v1   v2    v3    v4    v5    v6    v7 
  0      0      1      0      0      1      0 1 
 1      0      1      1      1      0      1 2 
 1      0      1      1      0      1      1 3 
 0      1      1      1      0      1      0 4 
 1      1      0      1      0      1      1 5 
 1      1      0      1      1      1      1 6 
 1      0      1      0      0      1      0 7 
 1      1      1      1      1      1      1 8 
 1      1      1      1      0      1      1 9 
 
 
 
Let us take the set of 10 styled digits presented on F

Total 8      6      8      7      4      9      7 

res d Ta
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Figure 6.5. Digit rectangle edges as features. 
 
To produce a classification tree leading to a partition S, we use summary Gini index 

(impurity function) G(v1/S)+G(v2/s)+….+ G(v7/S) as the criterion to maximize. Start by 
trying each of the features as the split base to select the best of them. Consider, for exam-
ple, partition S={S1,S2}of the Digit set according to attribute v2 which is present at S1={4,5, 
6, 8, 9, 0} and is absent at S2={1,2,3,7}. Cross-classification of S and v7 (see Table 6.8) 
yie

Table 6.8. Cross-classification of igit dataset. 
 

v7=0 
  

1        2          3 

(because the scaling coefficients must be all unity to make Ward’s criterion equivalent to 
the ta in Table 6.9 is not  

Table 6.9. Digit dataset pre rocesse
 

 

9  .2      .4      .2     .3      -.4      .1      .3 

 
  v2 3 

      
  v5      v4     v6    

     v7

    
     v1 

               v

lds G(v7/S)=0.053.  
 

 S=v2 and v7 on D

 S1      S2     Total 
5        2          7   v7=1 

Total 6        4         10 
 

To see what this has to do with the setting in which Ward’s criterion applies, let us pre-
process the Digit data matrix by subtracting the column averages without rescaling them 

 summary Gini index, see sections 3.5.2 an 5.1.5). However, the da
 

-p d by centering its columns.  

   v1    v2     v3     v4     v5     v6      v7
-.8     -.6     .2     -.7     -.4      .1    -.7 1 

2  .2     -.6     .2       .3      .6    -.9      .3 
3  .2     -.6      .2      .3     -.4      .1     .3 
4 -.8      .4      .2      .3     -.4      .1    -.7 
5  .2      .4     -.8      .3     -.4      .1     .3 
6  .2      .4     -.8      .3      .6      .1      .3 
7  .2     -.6      .2    -.7     -.4      .1     -.7 
8  .2      .4      .2     .3       .6      .1      .3 

0  .2      .4      .2    -.7       .6      .1      .3   
  
exactly the data matrix Y considered theoretically in section 5.1.5. Indeed, the theoretical 
data matrix in 5.1.5 and equation (5.4) comprises columns corresponding to all of the cate-
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gories, whereas the data matrices in Tables 6.7 and 6.9 reflect only half of the categories – 
those of the presence of edges v1 – v7, never an absence. Indeed, a column corresponding 

is formed by squares of the entries which are the same. That means that this 
lac t can be taken into account by just doubling the contributions accounted for with 
Ta

ance times N=10, 
which is 13.1. However, to get the data scatter in the left hand side of (5.4), this must be 
do

tions  Bkv = Nkv ckv
2 summed up over clusters S1 and S2. 

This is done in Table 6.10, the last line of which contains contributions of all features to the 
exp

Table 6.10. Fe ure c
 

v2=0 0.010   1.440   0.160   0.160   0.090   0.090   0.160 

to 
the
sent in Table 6.8. After the contribution 0.267 is properly doubled, the quantities do coin 

Table 6.11. Pair ise
 

to an “Absent” category is a mirror of the column corresponding to the “Presence” cate-
gory, with all ones made zero and, vice versa, all zeros made ones. After the centering, the  
lacking half of the data table would be the Table 6.9 negated, that is, multiplied by –1.  The 
data scatter 

king par
ble 6.9.  
 
The data scatter of matrix in Table 6.9 is the summary column vari

ubled to 26.2 to reflect the ``missing half'' of the virtual data matrix Y. 
 
Let us now calculate the within class averages ckv of each of the variables, v=v1,..., v7, 

in clusters k=1,2 and take contribu

lained part of the data scatter. 
 

at ontributions to Digit clusters according to v2. 

  v1        v2        v3        v4         v5       v6        v7 
v2=1 

Total 0.017   2.400   0.267   0.267   0.150   0.150   0.267 
 
The last item, 0.267, is the contribution of e7. Has it anything to do with the reported 

value of impurity function G(e7/S)=0.053? Yes, it does. There are two reasons to make 
these two quantities different. First, to get to the contribution from G(v7/S), it must be mul-
tiplied by N=10, which would make it 0.533. Second, the 0.267 value is the contribution 

0.007   0.960   0.107   0.107   0.060   0.060   0.107 

 data scatter of matrix Y obtained after enveloping of all 14 categories – not just 7 pre-

w  Gini indexes for all 7 features in Digit dataset. 

 v1        v2        v3        v4         v5       v6        v7 
v1    
v2    
v3    
v4    
v5    
v6    
v7    
Total 

0.245   0.053   0.045   0.115   0.120   0.020   0.420 
0.695   0.703   0.520   0.658   0.720   0.398   0.963  

0.320   0.003   0.020   0.015   0.053   0.009   0.187 
0.005   0.480   0.080   0.061   0.030   0.080   0.061 
0.020   0.053   0.320   0.034   0.003   0.009   0.034 
0.020   0.053   0.045   0.420   0.003   0.020   0.115 
0.080   0.030   0.005   0.004   0.480   0.080   0.137 
0.005   0.030   0.005   0.009   0.030   0.180   0.009 
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cid

o find out which of the features is to be used for the first split, all pair-wise Gini index 
values have been computed and presented in Table 6.11. According to these, feature v7 

0*0.963=9.63 wh  of the total 
dat ter. 

  

next partition step would contribute less than 10% of the data scatter, which is 
les

What is nice about the tree is that the clusters are well matching those found by using 
the data on Confusion between the digits in a psychological experiment (see Chapter 7). 

 v5, v1 for the 

    
 
v5           

         

e. Similar calculations made for the other six attributes, v1, v2, v3, v4, v5, and v6, would 
lead to the total contribution of S to the data scatter equal  10ΣfG(ef/S)=7.03 which is 
26.8\% of the scatter 26.2. 

 
T

ich is 36.8\%supplies the maximum summary contribution 1
a scat
 
 
            v1 
 
  
 
 
            v7 
 
 
 
Figure 6.6. Conceptual clustering of Digit dataset and features involved in the splits. 
 
Therefore, the first split must be done according to v7. Two more splits are due v5, con-

tributing 3.90, and v1, contributing 3.33, resulting in a four-cluster partition S={1-4-7, 3-5-
9, 2, 6-8-0}. This partition contributes 9.63+3.90+3.33=16.87 =64.4\% to the total data 
scatter. The 

s than the contribution of one entity on average –a good signal to stop the splitting. The 
classification tree, or conceptual tree, produced with the splits is presented on Figure 6.6 
along with a visualization of the set of tree-making features on the rectangle base of the 
Digit data.  

This should lead to further analysis of possible importance of features v7,
human judgment on similarity between the digits. 

F6.2 Divisive and conceptual clustering: Formulation 

In this section, two aspects will be covered: the appropriateness of using Bi-
secting K-Means as a splitting device in Ward-like divisive clustering and the rela-
tion between the square-error criterion and the summary Gini index.  

  
On the first glance, the Ward criterion for dividing an entity set in two clusters 

– maximize Ward distance between the split parts – has nothing to do with that of 

 
             

v7

v5

v1

6 8 0

1 4 7

3 5 9 

   2 

0           1 
 

    0             1 
 
                    0             1 
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K-Means. The K-Means criterion, in this case, given a parental cluster J⊆I, is to 
minimize 

1 2
1 2

c1  
mentary part of the data scatter forms another criterion presented in equa-

tio
N
ters.  

( , ) ( , ) ( , )
i S i S

W S c d i c d i c
∈ ∈

= +∑ ∑  where S1 and S2 are the split parts 

of J, entroids and d squared Euclidean distance. The
comple

 and c2 their respective c

n (5.6). This complementary criterion is to maximize B(S,c)= 
, ,c c N c c< > + < >  where N1 and N21 1 1 2 2 2

 are respective cardinalities of the clus-

 
Let us prove that that Ward distance between the two clusters, 

1 2
1 2 1 2

1 2

( , ) ( , )dw S S d c c
N N

=
+

, we need two equations. The 

 squared Euclidean distance through inner products, 
1 2 1 1 1 2 2 2 1 2( , ) ( , , ) ( , , )d c c c c c c c c c c= < > − < > + < > − < > . The second is relation be-

tween the cluster centroid

N N , is just that. To proceed

first just expresses the

ntal cluster centroid c:  
d in dw(S1,S2) and, in fact, is ir-

−(N1/N2)c1. This can be put into

s and the pare
1 1 2 2 1 2( )N c N c N N c . Since c is not involve

relevant to it, we may take it to be c=0. Then the latter equation implies that c
+ = +

2=  
 

1 1 1 2 1 1 1 2 1 1, , , ,c c c c c c N N c c< > − < >=< > + < >= .  

1 2 2 1 1( ) ,N N N c c= + < > . Similarly, equation 
1 1 2 2 1 2 1 2 2, , ( ) ,c c c c N N N c c< > −< >= + < >  

is obtained. Substituting these through the first equation in Ward distance, we find 
1 2 1 2

1 2 1 2
1 2 1 2

( , ) ( , )N N N Ndw S S d c c
N N N

= = + < > + + < >
+ +

=
1 2 2 1 1 1 2 1 2 2(( ) , ( ) , )N N N c c N N N c c

N
B(

cl
S,c), which proves the statement. 
That means that Ward-like divisive ustering is adequately served with Two-

splitting, or Bisecting K-Means. 
 
Now we will show that, in the situation in which all the features are categorical, 

maximizing the summary Gini index ( / )
v V

G v S
∈∑ is as adequate.  Assume that 

data matrix Y in this case is drawn by putting a dummy variable for each of the 
categories with a follow up centering it with the mean which is the category fre-
quency. Then, according to Statement 3.4.2.1(c) in section 3.5.2, Gini index 
G(v/S), multiplied by the number of entities, is the contribution of the partition S 
to the summary scatter of the dummies corresponding to categories of feature v – 
this, in fact, easily follows from equations (2.13) and (3.19). This implies that the 
summary Gini index, multiplied by the number of entities, is the contribution of S 
to the summary scatter of all the dummy variables, that is, the data scatter of ma-

ared by using 

trix Y. That means that maximum of the summary Gini index is reached at a parti-
tion minimizing the total unexplained contribution which is exactly the square er-
ror criterion. The statement is proved.    

 
Q.6.10. What data standardization should be applied if one wants to build a con-
ceptual clustering tree maximizing the summary Pearson chi-squ
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Ward distance maximization? A. Each category is to be represented by a dummy 
variable which then should be centered by subtracting its frequency and normal-
ize

ation 
tre erion. It is correlation to a target variable in the 
lat lation with all the features forming the cluster-

, in the former case, even if it is expressed as maximizing Ward distance 

-like divisive clustering 

 and draw tree root as a node corresponding to I at the height of W(I) 

o parts, S1 and S2, to maximize Ward distance wd(S1, S2). 

 two children nodes corresponding to S1 and S2  at the parent 
o J, their heights being their square errors. 

t cluster hierar-
ch

Ch s, halt and output the 
hie ep 2. 

ve clustering can be an 
iss  

 specify initial seeds of its split parts, c1 and c2. 

d by the square root of the frequency (see Statement 3.4.2.2(c)). 

C6.2 Divisive and conceptual clustering: Computation 

he process of divisive clustering is much like that of building a classificT
e – the only difference is the crit

r case and it is summary correte
ing space
between split parts. The equivalence between K-Means criterion at K=2 and the 
criterion of maximization of Ward distance justifies the following algorithm. 

 
Ward
 

1. Start 
Put J ⇐ I
which is the data scatter, by itself or 100 per cent. 

 
2. Split 
Split J in tw

 
3. Draw 
In he drawing, addt
node corresponding t

 
4. Update 
Find the cluster of maximum height among the leaves of the curren

y and make it J.  
 

5. Stop-Condition 
eck the stopping condition as described below. If it hold
archy and possible interpretation aids; otherwise, go to Str

 
Developing a good splitting algorithm at Step 2 in divisi
e. Here are two versions: Two-splitting and C-splitting. u

 
Two-splitting (2-Means splitting, Bisecting K-Means) 
 

1. Initialization 
Given J,
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2. Batch 2-Means. 
Apply Bisecting K-Means with initial seeds specified at step 1 and the squared 

Euclidea

3. Output 

ids c1 and c2;  
nd h(S2);  

To lied: 
(1a) random selection; 

wo centroids derived with algorithm Build in section 5.1.5.  
 

nable solution for 
any sizeable dataset. Maximally distant entities not necessarily reflect the structure 

e case study 6.1). Therefore, two latter options should be pre-
fer

Conceptual clustering with binary splits) 

two parts. If v is quantitative or ordinal, J-splits 
are defined by splits of its range in two intervals: one part consists of entities at 

s less than or equal to yiv and the other of those at which v is greater than 
ylv

ries and the 
same yil=0 value at each of them.  

3. 
v, ylv) which received the highest score and perform the 

bin ry split of J, thus generating two its offspring nodes S1 and S2. 

n distance.  
 

Output:  (a) final split parts S1 and S2;  
              (b) their centro

     (c) their heights, h(S1) a
              (d) contribution of the split which is Ward distance dw(S1 , S2). 
 
 specify two initial seeds in Two-splitting, either option can be app

(1b) maximally distant entities; 
     (1c) centroids of two Anomalous pattern clusters derived on J as described in  
            section 5.1.5. 

(1d) t

Random selection must be repeated many times to get a reaso

of a good split (se
red. 
 
C-splitting (
 

1. Initial setting  
Set J to consist of the universal cluster, the entire entity set I. 
 

2. Evaluation 
In a loop over all leaf clusters J and variables v∈V, for each J and v, consider 

all possible splits ylv of J over v in 

which v i
. If v is nominal, J is split over each of v’s categories l in “yes” or “no” parts. 

This amounts to using quantitative dummy variables for the catego

  
Split  
Select that triplet (J, 
a
 

4. Output 
This is the same as in the previous versions plus the variables v and split values 

yiv for each of the splits. 
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Comment 6.1. Some may argue that the framework of divisive clustering is de-
liberately set as a greedy optimization procedure: at each local splitting step the 
best solution is taken which is not necessarily the best if one considers summary 
results of several sequential steps. The greedy-wise nature of the setting is true. 
Yet it is not easy to formulate a holistic optimization problem for divisive cluster-
ing. If for example, the process of splitting goes all the way down to singleton 
clusters, then perhaps the greedy-wise setting is most natural (Mirkin 1996). When 
there is a stopping condition such as a pre-specified number K of terminal clusters, 
then the problem becomes of globally minimizing K-Means square-error criterion. 
One should remember that the K-Means criterion has some innate drawbacks re-
lated to its rigidity in putting the goal of getting split parts as uniform as possible 

ing the 
ata analy-

6.4 Single linkage clustering, connected components and 

d clusters: Presentation 

onsider a similarity, rather than dissimilarity, matrix, for a change. All the 
co ents of this section applies to dissimilarity data as well with the only change – 
of t king maximum for taking minimum.  

able 6.12. A symmetric version of Confusion data in Table 0.7. 

 
 
 
 
 

(see, for example, case study 5.2 in section 5.1.1). This means that achiev
global minimum is not necessarily beneficial from the point of view of d
sis.   

Maxmum Spanning Tree MST 

P6 4 Maximum Spanning Tree an.

C
nt
a
 
T
 
 Stimulus                           Response 
    1       2       3      4       5     6      7       8      9     0 
  877     11    18    86      9    20   165      6    15    11 1 
     11  782    38    13    31    31       9    29    18    11 2 
     18    38   681     6    31      4     31    29  132    11 3 
     86    13      6  732      9     11    26    13    44      6 4 
       9    31    31      9   669    88      7    13  104    11 5 

    20    31      4    11     88  633      2  113    11    31 6 
  165      9    31    26       7      2  667     6     13    16 7 
      6    29    29    13     13  113      6  577    75  122 8 
    15    18   132   44   104    11    13    75  550    32 9 
    11    11     11     6     11    31    16  122    32  818 0 
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Weighted graphs, or networks, is a natural way for representing similarity ma-
trices such as those in Tables 0.7 and 0.8. Single link clustering method applies to 
symmetric matrices, such as that presented in Table 6.12 – a symmetric version of 
the Confusion data table 0.7 obtained by a most conventional way: given a possi-
bly non-symmetric matrix A, take its transpose AT and define Ã=(A+AT)/2. This is 
a technical way to express the idea that every symmetric pair of non-coinciding 
entries such as 7 in position (1,3) and 29 in position (3,1) should be substituted by 
their half-sum: 36/2=18. To obtain data in Table 6.12, the result was rounded up to 
the nearest larger integer. 

 
The similarity matrix in Table 6.12 can be represented by a graph whose nodes 
correspond to the entities i∈I and edge weights to the similarity values. Fre-
quently, a threshold t applies so that only those edges {i,j} are put in the graph for 
which the similarity values are greater than the threshold.  

 
For the threshold t=0.20, this graph is presented on Figure 6.6. 

 
In graph theory, a number of concepts have been developed to reflect the struc-

ture of weighted graphs of which one of the most popular is the concept of Maxi-
mum Spanning Tree (MST).  A tree is a graph with no cycles, and a spanning tree 
is a tree over all the entities under consideration as its nodes. The length of a 
spanning tree is defined as the sum of weights of all its edges. An MST is a span-
ning tree whose length is maximum.  

 
Worked example 6.3. Concept of MST 
 
Figure 6.8 highlights two spanning trees on the graph of Figure 6.7. The length of that 

on the left is 165{1-7}+31{7-3}+44{4-9}+32{9-3}+31{3-5}+38{3-2}+29{3-8}+31{2-
6}+122{8-0}=523; here, curly braces correspond to the edges in the tree.  
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Figure 6.7. Network of connections corresponding to similarity weights of 21 or greater 

in matrix of Table 6.12. 
 

The length of that on the right is 86{1-4}+165{1-7}+31{7-3}+32{3-9}+104{9-5}+88{5-
6}+113{6-8}+38{3-2}+122{8-0}=779, almost 50% greater. In fact this is a Maximum 
Spanning Tree. 

 
Given a weighted graph, or similarity matrix, an MST  T can be built by using Prim al-

gorithm which collects T step by step starting from a singleton tree, which may pick any of 
the nodes, and then adding a maximum outside link to T one by one.  
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Figure 6.8. Two spanning trees on the graph of Figure 6.7 are highlighted by bold edges. 
The length of the tree on the left is 523, and that on the right, 729.                                                                                                 

 
Worked example 6.4. Building an MST on Confusion data 
 
Let us build a Maximum Spanning Tree for the network on Figure 6.7. Start, for exam-

ple, with T={0} and add to T that link which is maximum, that is, obviously 122{0-8}. 
Since T has two nodes now, we need to find a maximum external link from T to the rest, 
which is 113{8-6}, thus getting three nodes, 0, 8, 6 in T. The maximum external link now is 
88{6-5} bringing 5 into T. Next maximum links are 104{5-9}, 32{3-9} and 31{3-7} bring-
ing 9, 3 and 7, respectively, into T. Of the three remaining nodes outside T, 2, 4 and 1, the 
maximum link is 165{7-1} followed by 86{1-4}. Node 2’s maximum connection is 38{2-
3} thus completing the MST drawn on the right hand side of Figure 6.8. 

 
Prim’s algorithm is what is called greedy – it works node-by-node and picks up 

the best solution at the given step, paying no attention to what happens next. This 
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is one of a very few combinatorial problems that can be solved indeed by a greedy 
algorithm. On the other hand, one should not be overly optimistic about perform-
ances of the algorithm because it finds, at each step a maximum of a number of 
elements, on average – half the number of entities, and one should not forget that 
finding a maximum is a rather expensive operation.  

 
Another potential drawback, related to the data size, which is quadratic over the 

number of entities, is not that bad. Specifically, if the similarities are computed 
from data in the entity-to-feature format, the difference between the data sizes can 
grow fast indeed: say 500 entities over 5 features take about 2,500 numbers, 
whereas the corresponding similarity matrix will have 25,000 numbers – a hun-
dred times greater. Yet if the number of entities grows 20 times to 10,000 – the 
number not unheard of nowadays – the raw data table will take 50,000 numbers 
whereas the similarity matrix, of the order of 100,000,000, a hundred millions, 
which is two thousand greater! Yet it is possible to organize the computation of an 
MST in such a manner that the quadratic size increase is not necessary, almost all 
necessary similarities can be calculated from the raw data when needed. 

 
Two cluster-analysis concepts are related to MST: connected components of 

threshold graphs and single link clustering. 
 
A connected component of a graph is a maximum subset of nodes such that 

each pair of its nodes can be connected by a path in the graph. Given a similarity 
matrix or weighted graph on its entities, a threshold graph is defined as a graph 
with the same set of nodes and set of edges {i,j} such that their weights in the 
original graph are greater than threshold t, for some real t. This gives a most natu-
ral concept of cluster: a connected component in a threshold graph. On the first 
glance, there can be myriads of different threshold graphs, but in fact all of them 
are defined by an MST.  
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Figure 6.9. Threshold graph at t=50 for the graph of Figure 6.6 is on the left, 
and MST with 3 weakest links shown using dashed lines is on the right. 

 
The components of a threshold graph are fragments of any MST found by cut-

ting its weakest edges – those at which weights are less than the threshold. It 
should be clear from the definition that all connections within the MST fragments 
are weaker than the threshold. 

 
Worked example 6.5. MST and connected components 
 
Let us sort all the edges in MST found at the graph on Figure 6.8 in the ascending order: 

31{3-7}, 32{9-3}, 38{3-2}, 86{1-4}, 88{5-6},  104{9-5}, 113{6-8}, 122{8-0}, 165{1-7}. 
Given a threshold t, say t=50, cut all the 3 edges in the tree that are less than the threshold, 
3-2, 3-7 and 3-9 – the tree will be partitioned in 3+1=4 fragments corresponding to con-
nected components of the corresponding threshold graph.  

 
Figure 6.9 presents, on the left, a threshold graph at t=50, along with clearly seen com-

ponents consisting of subsets {1,4,7}, {2}, {3}, and {5,6,8,9,0}. The same subsets are seen 
on the right where the three weakest links are cut out of the MST. The fact that the thresh-
old graph components are MST fragments is not a coincidence but rather a mathematically 
proven property of the MSTs.  

 
The single linkage clustering is a hierarchical clustering approach, either ag-

glomerative or divisive, that is based on the following definition of similarity be-
tween clusters: given a similarity matrix A=(aij) between entities i,j∈ I, the simi-
larity between subsets S1 and S2 in I is defined by the maximum similarity between 
their elements, . This is why this approach sometimes is  ijSjSi aSSa

21
,max),( 21 ∈∈=
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Figure 6.10. A binary tree of the single link clustering for the MST of Figure 6.8; 
the heights of the branches reflect the similarities between corresponding nodes. 
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referred to as the Nearest Neighbor approach. It appears, single linkage clusters 
are but fragments of any MST built according to the similarity matrix. 

 
Specifically, given an MST, the entire hierarchy of single link clustering can be 

recovered by one-by-one cutting the weakest links (divisive clustering) or, starting 
from the trivial singletons, one by one merging the strongest links. The similarity 
values over the MST can be used as the height function for drawing over the proc-
ess of mergers/divisions. 

 
Worked example 6.6. Single link hierarchy corresponding to an MST 
 
Let us build a binary classification tree according to the MST on Figure 6.9. This tree is 

presented on Figure 6.10. Note that in contrast to the heights defined in section 6.2 over 
dissimilarities, the direction of the height axis goes down here to reflect the principle that 
the smaller the similarity the further away are the clusters. Specifically, 7 and 1 merge to-
gether first because of the maximum similarity, 165; then 0 and 8 merge (similarity 122) af-
ter which 6 is joining in (similarity 113). Then 5 and 9 merge together (similarity 104) after 
which they merge with cluster {0,6,8} (similarity 88). Then 4 joins in cluster {1,7} (simi-
larity 88). At last, 2 and 3 merge  at similarity 38. The process is complete when the three 
remaining clusters merge almost simultaneously, at similarities 32 and 31. 

 
Case-study 6.4. Difference between K-Means and Single Link clustering 
 
Consider a set of 2D points presented on Figure 6.11. Those on the left have been clus-

tered by using the single link approach, whereas those on the right, by using the square er-
ror criterion of K-Means. 

                  

 
(a)                                               (b)

Figure 6.11. A 2D point set: clustered with the single link method (a) and K-Means (b). 
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Overall, this example demonstrates the major difference between conventional cluster-
ing and single link clustering: the latter finds elongated structures whereas the former cuts 
out convex parts. Sometimes, especially in the analysis of results of physical processes or 
experiments over real-world particles, the elongated structures do capture the essence of the 
data and are of great interest. In other cases, especially when entities/features have no intui-
tive geometric meaning – think of bank customers or internet users, for example, convex 
clusters make much more sense as groupings around their centroids. 

 
Comment 6.2. An interesting property of the single linkage method is that it 

involves just N-1 similarity entries occurring in an MST rather than all N(N-1)/2 
entries in A. This results in a threefold effect:  

(1) a nice mathematical theory,  
(2) fast computations, and  
(3) poor application capability. 
 

Worked example 6.7. MST and single linkage clusters for Company dataset 
 
To illustrate point (3) in Comment 6.2 above, let us consider a Minimum Spanning Tree 

built on distances between Companies in Table 6.1.  Starting from Ave, we add minimum 
link Ant(0.51)Ave to tree T being built, then we add to T the minimum distance link 
Ast(0.77)Ant. Then the minimum distance is 1.15 between Bay and Ave, which brings next 
links Bum(0.87)Bay, Bre(0.75)Bum, followed by Civ (0.83)Bre and Cyb(0.61)Civ. (Note 
that all row-wise minimum distances highlighted on Table 6.1 have been brought in the tree 
T. These minimum distances can be used, in fact, in a different method for building an 
MST – Boruvka’s algorithm (1926), arguably the very first clustering method!). This MST 
T, in fact a path, is presented on the left side of Figure 6.12. 

 
           
    51        77     

Ave                   Ant                   Ast 
 
     
 
                               75 

Bay                  Bum                  Bre 
 
                                       83 
                                
                 Cyb                  Civ 
                               61 

         51      77 
Ave                  Ant                     Ast 
 
      115 
 
             87                        75 
Bay                  Bum                  Bre 

 
                                        83 
 
                                61                            
                Cyb                   Civ 

 

 
Figure 6.12. Minimum Spanning Tree for Company dataset in Table 6.1 (on the left; two 
weakest links, 115 and 87, are shown using ordinary font), and three single link clusters ac-
cording to it (on the right): the structure of company products is reflected on the tree and 
lost on the clusters because of wrong cuts. (For the sake of convenience, the distances are 
multiplied by 100.)  
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This path goes along the product clusters so that B companies are all between A and C 
companies. Yet the single link clusters shown on the right side of Figure 6.12 do not reflect 
the structure of the set but separate a distant company Bay and mix together products B and 
C – all this just because the right-to-remove link Bre-Civ (0.83) appears a wee smaller than 
wrong-to-remove link Bay-Bum (0.87). 

 
Q.6.11. Explain the sequence of splits in a divisive algorithm according to tree of 
Figure 6.10. 

 
Q.6.12. How many edges in an MST are to be cut if the user wants to find 5 clus-
ters? 

 
Q.6.13. Prove that the number of edges in an MST is always the number of enti-
ties short one. 

 
Q.6.14. Apply Prim’s algorithm to Amino acid similarity data in Table 0.8. 

F6.4  MST, connected components and single link clustering: 
Formulation 

Here we present some mathematical properties relating the concepts of Maxi-
mum Spanning Tree, connected component of a graph and Nearest Neighbor clus-
tering. 

F.6.4.1. MST and connected components 

Let us first recall some definitions from graph theory.  
 
A weighted (similarity) graph Г=(I,G,A) is defined as a triplet of: (i) an N-

element set of nodes I; (ii) set of edges, that is, two-element subsets of I, G; and 
(iii) edge weight function represented by a symmetric matrix A=(aij) so that aij =0 
if {i,j}∉G.   A graph is referred to as an ordinary graph if its nonzero weights are 
all unities. 

 
A path between nodes i and j in Г is a sequence of nodes i1, i2,…, in such that 

{im, im+1}∈G for each m=1,2,…,n-1 and i1=i , in =j. A path is referred to as a cycle 
if i1=in. A subset of nodes S is referred to as a connected component if there is a 
path within S between each pair of nodes in S, and S is maximal in this sense so 
that addition of any supplementary node to S breaks the property. Graph Г is 
called connected if it consists of just one connected component.  
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Given a connected weighted graph Г=(I,G,A), a connected weighted graph 

T=(J,H,B), with no cycles, is referred to as its spanning tree if J=I, H⊂G, and B is 
A restricted to H, so that bij=aij for {i,j}∈ H and bij=0 for {i,j}∉ H. A characteristic 
property of a spanning tree T is that it has exactly N-1 edges: if there are more 
edges than that, T must contain a cycle, and if there are less edges than that, T 
cannot span the entire set I and, therefore, it would consist of several connected 
components.  

The weight of a spanning tree T=(I,H,B) is defined as the total weight of its 
edges, that is, the sum of all elements of weight matrix B. A spanning tree of 
maximum weight is referred to as a Maximum Spanning Tree, MST. 

 
Given a weighted graph Г=(I,G,A) and a real t, ordinary graph Гt=(I,Gt,At) is 

referred to as a threshold graph if Gt={{i,j}: aij > t}. Given a spanning tree T and a 
threshold t, its threshold graph can be found by cutting out those edges whose 
weights are smaller than or equal to t. It appears T bears a lot of structural infor-
mation of the corresponding graph Г=(I,G,A).  

 
In particular, connected components of an MST found by cutting those links 

from MST that are less than t one-to-one correspond to connected components of 
the threshold graph Гt. 

 
Indeed, consider a component S of MST T obtained by cutting all edges of the 

T whose weights are less than t. We need to prove that for each pair i,j∈S there is 
a path between i and j such that it all belongs to S and the weight of each edge in 
the path is greater than t, and for all i,k such that i∈S and k∉S, if {i,k}∈G, then aik 
≤ t. But the former obviously follows from the fact that S is a connected compo-
nent of T in which all weights are greater than t since all the others have been cut 
out. The latter is not difficult to prove either: assumption that aik>t for some i∈S 
and k∉S such that {i,k}∈G would contradict the assumption that T is an MST, that 
is, that the weight of T is maximal, because by substituting the edge connecting S 
and the component containing k by edge {i,k}, one would obtain a spanning tree of 
a greater weight.  Assume now that an S is a connected component of the thresh-
old graph (at threshold t), and prove that S is a component of the threshold graph, 
at the same threshold t, for any MST. Indeed, if S overlaps two components, S1 
and S2, of the threshold graph of some MST T, then there must be a pair i,j in S 
such that i∈S1 and j∈S2 and aij >t , which again contradicts the fact that S1 and 
S2 are not connected in the threshold graph of T. This completes the proof.  
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F6.4.2 MST and single link clustering 

Single link clustering is, primarily, an agglomerative clustering method in 
which the similarity between two clusters, S1 and S2, is defined according to near-
est neighbor rule as the maximum similarity between elements of these clusters, 

 – the fact that the between-cluster similarity is defined 

by just one link underlies the name of the method.  
ijSjSi aSSa

21
,max),( 21 ∈∈=

 
There is no need to revise all the maximum similarities after every merger step. 

New similarities can be revised dynamically in the agglomeration process accord-
ing to the following rule:  

 
a(S, S1∪S ) =max[a(S,S2 1), a(S, S )], 2

 
where S1∪S2  is the result of the agglomeration step. 

 
Thus, the only intensive computation is finding the maximum in the newly formed 
column a(S, S1∪S ) of the similarity matrix over all current clusters S.  2

 
Yet there is another way to proceed – by building an MST first. All the merger 

steps can be made according to the MST topology. First, the N-1 edges of the tree 
are to be sorted in the descending order. Then the following recursive steps apply.  
On the first step, take any maximum similarity edge {i,j}, combine its nodes into a 
cluster and merge i and j by removing the edge. On the general step, take any re-
maining similarity edge {i,j} of the maximum similarity value (among those left) 
and combine clusters containing i and j nodes into a merged cluster. Halt, when no 
edges remain in the sorted order. 

 
This operation is legitimate because the following property holds: clusters 

found in the process of mergers according to the sorted list of MST edges are clus-
ters obtained in the agglomerative single link clustering procedure. 

  
There is no straightforward divisive version of the Single Link method as 

originally defined. However, it is rather easy to do if an MST is built first. Then 
cutting the tree over any of its weakest – minimum – links produces the first single 
link division. Each of the split parts is divided in the same way – by cutting out 
one of the weakest links.  

  
Q.6.15. Let us refer to a similarity matrix A as ultrametric if it satisfies the follow-
ing property: for any triplet i,j,k∈I, aij ≥  min (aik, akj), that is, two of the values aij, 
aik, akj are equal, whereas the third one may be greater than that. Given an MST T, 
define a new similarity measure between any nodes i and j by using the unique 
path T(i,j) connecting them in T: at(i,j)=min k,l∈T(i,j) akl. Prove that: 
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(i) Similarity at(i,j) coincides with that defined by the agglomerative hierarchy 
built according to the Single Link algorithm; 

(ii) Similarity at(i,j) is an ultrametric; 
(iii) Similarity at(i,j) is the maximum ultrametric satisfying  condition at(i,j)≤ 

aij for all i,j∈I. 

C6.4  Building a Maximum Spanning Tree: Computation 

To find an MST, several “greedy” approaches can be undertaken. One of them, 
by J. Kruskal (1956),  finds an MST by picking up edges; the other, by R.C. Prim 
(1957), picks up nodes. Prim’s algorithm builds an MST T from an arbitrary node 
by finding the weakest link to the tree from outside and adding it to tree at each 
step. An exact formulation is this. 

 
Prim’s algorithm 
 

1. Initialization.  
Start with tree T consisting of an arbitary node i∈I with no edges. 
 

2. Tree update.  
Find j∈ I-T maxiimizing aij over all i∈T and j∈I-T. Add j and edge {i,j} with 

the maximal aij to T. 
 

3. Stop-condition.  
If I-T=∅, halt and output tree T. Otherwise, go to 2. 
 

To build a computationally effective procedure for the algorithm may be  a cum-
bersome issue, depending on how maxima are found, to which a lot of work has 
been devoted. A simple pre-processing step can be  quite useful: in the beginning, 
find a nearest neighbor for each of the entities; only they may go to MST. At each 
step, update the neighbors of all elements in I-T so that they lead to elements of T 
(Murtagh 1985). The fact that the algorithm builds an MST indeed  can be proven 
using inductive statement that T at each step is part of an MST. 

 
Q.6.17. Prove that the MST would not change if the similarities are transformed 
with a monotone transformation, that is, a function ϕ(x) such that ϕ(x1)> ϕ(x2) if 
x1>x2. Hint: Because the sequence of events in Prim’s algorithm does not change. 

 
Q.6.18. Prove that an agglomerative version of the single linkage method can 
work recursively by modifying the similarities, after every merger S1∪S2, accord-
ing to formula 

                           a(S, S1∪S2) =max [a(S,S1), a(S, S2)], 
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and each time merging the nearest neighbors in the similarity matrix. 

6.5 Summary 

Hierarchical clustering builds a binary hierarchy. Up to date, this is usually 
taken as a prerequisite to partitioning the entity set rather than anything else. Yet 
with the surge of research on hierarchic ontologies as practical tools for knowl-
edge handling started recently, it should not take long to see hierarchical cluster-
ing as serving, and of course modified by, those.   

 
The Chapter’s material explains the algorithm for agglomerative clustering and 

two different algorithms for divisive clustering. Divisive clustering splits clusters 
in parts and should be a more interesting approach computationally because it can 
utilize fast splitting algorithms and stop splitting whenever  it seems right. Much 
of the material relates to the so-called Ward distance – an implementation of K-
Means clustering criterion, the summary square error. In particular, both presented 
divisive clustering algorithms use this criterion, rearranged in an appropriate for-
mat. One algorithm proceeds with conventional K-Means at K=2, utilized for 
splitting a cluster. The other maximizes summary Gini coefficient to make splits 
conceptual, that is based on one feature at a time. The last section explains relation 
between the single link clustering, a popular method to extract elongated struc-
tures from the data, and graph-theoretic structures in data: the Minimum Spanning 
Tree (MST) and connected components.    
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Abstract    

This Chapter is devoted to clustering similarity, graph and network data – these 
are represented by square matrices rather than rectangular ones.  This chapter de-
scribes methods for finding a cluster or two-cluster split combining three types of 
approaches from both old and recent developments:  

(a) combinatorial approach that is oriented at clustering as optimization of some 
reasonable measure of cluster homogeneity,  

(b) additive clustering approach that is based on a data recovery model at which 
the data is decoded from a cluster structure to be found by minimizing the discrep-
ancy between them and observed similarities, and  

(c) spectral clustering approach exploiting the machinery of matrix eigenvalues 
and eigenvectors as a relaxation of combinatorial problems for similarity cluster-
ing.  

These methods are extended to partitioning or hierarchical clustering.  

When combining different approaches for the first time, as is the case, one or 
two combinations can be rather unusual but not necessarily unsound. Such is, for 
example, a combination of the one-cluster approach from Mirkin (1987, 1996) and 
modularity transformation from Newman and Girvan (2004, 2006) which is de-
scribed in section 7.1. In addition to the partitioning or hierarchical clustering ap-
proaches discussed in Chapters 5 and 6, respectively, this chapter involves a 
somewhat more conservative approach of finding one cluster at a time. This ap-
proach allows for leaving some entities unclustered, thus making tighter clusters 
on the rest, which is quite convenient at the network data type.  
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7.1 One cluster summary similarity with background subtracted 

P7.1 Summary similarity and two types of background: 
Presentation 

The sum of within cluster similarities seems a perfect criterion for clustering – 
it is simple and intuitive (see Figure 7.1). The greater the within cluster total simi-
larity, the tighter is the cluster. Maximizing this criterion should lead to a cluster 
of highest internal similarity. 

Unfortunately, when all the between-entity similarities are non-negative – a 
quite typical situation, the criterion is of no use because it reaches its maximum at 
the largest possible cluster of all, the universal “cluster” S=I consisting of the en-
tire data set. A reasonable alternative, maximizing the average within cluster simi-
larity, will not work here either: the average steadily declines when the number of 
entities in cluster S increases. Leaving the average aside for now (to return to it in 
section 7.3), let us concentrate on modifying the summary similarity criterion by 
subtracting some “background” similarity pattern from data. 

There can be different background similarity patterns that should be removed to 
sharpen up the clusters hidden in data, of which two are considered here: 

(a) constant “noise” level (see Figure 7.2), and 
(b) random interactions. 

     
S 

         S 

      
Figure 7.1. The structure of similarity matrix regarding a cluster S, under the as-
sumption that elements of S stand first. The checked part relates to the within clus-
ter similarities. 

Whereas the former seems rather obvious (see also some elaborated versions of 
that in section 7.3), the latter involves a probabilistic interpretation of the similari-
ties as emerging from some interactions between the entities. According to this in-
terpretation, each entity i is assigned with a probability of interaction, equal to the 
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proportion of the summary similarity in i-th row in the whole summary volume of 
the similarities. Then random interactions between two entities will occur with the 
probability equal to the product of their respective probabilities, which therefore 
should be subtracted from the similarity coefficients to clear up the nonrandom 
part of the similarity.  

 
 
 
 
 
 
 
 

Figure 7.2. Illustration of the effect of subtraction of a constant background 
“noise” from the similarity values. The graph shows similarity values (axis y) 
against some ordering of entity pairs (i,j) over x-axis. At zero noise level, the area 
of positive similarity values is much larger than that above the dashed line at 
which the area narrows down to two small high similarity islands.  

    aij

       a  

ij 

The summary criterion with the uniform noise subtracted is referred to as uni-
form clustering criterion (Mirkin 1996), and that with the random interaction noise 
subtracted is referred to as modularity function (Newman 2006). In this section, 
examples of similarity data are given in three different formats:  

(i) genuine similarity,  
(ii) networks or graphs,  
(iii) affinity data derived from distances according to an entity-to-feature 

table.  
Each of these formats has its specifics: unpredictable quirks in similarities as raw 
data (format i), many zeros and flat positive similarity values (format ii), and 
geometric nature of affinities (format iii).  

Yet when presented as an entity-to-entity similarity matrix and subjected to a 
standardization step by subtracting background similarities, method AddRem de-
scribed later in the section can be applied to maximize the total within cluster 
similarity. AddRem works its way by sequentially adding or removing one entity 
at a time. The method stops at a cluster when no change of one entity state can in-
crease the criterion. The resulting cluster is provably tight (see section F7.1). 

Let us consider now application of this method, under each of the two back-
ground removal options – modularity and uniform, to instances of the three data 
types. 

Worked example 7.1. Summary similarity clusters at a genuine similarity 
data 

Consider a similarity data set such as Confusion between numerals in Table 0.7, 
already analyzed in section 6.4. 
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A symmetric version of the Confusion data is presented in Table 7.1: the sum of 
A+AT without further dividing it by 2, for the sake of wholeness of the entries. In 
this table, care has been taken of the main diagonal. The diagonal entries are by 
far the largest and considerably differ among themselves, which may highly affect 
further computations. Since we are interested in patterns of confusion between dif-
ferent numerals, this would be an unwanted effect so that the diagonal entries 
should be made to bear no effect on the clustering process. They are changed for 
zeros in Table 7.1. 

Table 7.1 Confusion data from Table 0.7 summed up with the transpose after 
the diagonal elements removed. 

 1      2       3      4     5       6     7      8       9       0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

  0    21    36   171    18    40   329    11    29    22 
 21     0    76     26    62    61     18    57    36    22 
 36   76      0     11    61      7     61    57   263    22 
171   26    11      0    18    22     51    25     87    11 
  18   62    61    18      0  176     14    25   208    21 
  40   61     7     22  176      0       4  225     22    61 
329   18    61    51    14      4       0     11    25    32 
 11    57    57    25    25   225    11      0   149  243 
 29    36  263    87  208     22    25   149      0    64   
 22    22    22    11    21     61    32   243    64      0 

Total 677 379  594  422  603   618  545   803  883  498 
 
This matrix contains a lot of information that seems unnecessary to the human 

eye. Usually a symmetric similarity matrix with no main diagonal is represented 
by its upper triangle – that part which is over the main diagonal (see Table 7.2). 
One can notice that the last row, as well as first column, are absent from Table 7.2. 

Table 7.2 Symmetric confusion data from Table 7.1 in the upper triangle format. 
 2     3     4     5     6     7     8     9     0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

21    36   171    18    40   329    11    29    22 
    76    26    62    61    18    57    36    22 
          11    61     7    61    57   263    22 
                18    22    51    25    87    11 
                     176    14    25   208    21 
                             4   225    22    61 
                                  11    25    32 
                                       149   243 
                                              64 

 
The results of the clustering algorithm AddRem(i) applied, at each i,  in the two 

different settings – modularity and uniform –  are presented in Table 7.3. The arbi-
trariness of choosing an entity to start has no effect in this case. Not too many 
clusters have been found anyway. The modularity criterion is capable of separat-
ing the cluster {1,4,7} from the rest, albeit with a somewhat lesser criterion value, 
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but the rest also appears to be a cluster, in fact a tighter one. The uniform criterion 
at the threshold subtracted at the average level of 66.91 with no diagonal entries 
taken into account, achieves a similar fit, though it loses digit 2 from the “rest” 
cluster – which is good because this digit keeps a company of its own being very 
rarely confused for anything else. Yet at a larger threshold value of a=100, the 
uniform criterion leads to four high density clusters – exactly those produced in 
section 6.3 by the conceptual clustering applied to the styled numerals’ images. 
This would be a success story provided that the user knew beforehand the right 
threshold value, which is a rather bold hypothesis.  

Table 7.3. One-cluster structures found with the summary criterion at symmet-
ric Confusion data in Table 7.1. 

Modularity  Uniform, π=Mean=66.91 Uniform, π=100 

Cluster                Criterion   Cluster              Criterion Cluster            Criterion 
2 3 5 6 8 910         1137.2 3 5 6 8 910             1200.7 1 4 7                       502 
1 4 7                        808.2 1 4 7                         700.5 3 5 9                       464 

6 8 10                     458 
2 

 
Results reported in Table 7.3 lead to the following question. Would the struc-

ture be revealed in a more uniform way if clusters are taken sequentially, so that 
once clustered entities are removed from the set, compiling a new random interac-
tion or average similarity data on the remaining set and applying AddRem again 
and again. There may be a problem with this approach, which can be clearly seen 
in Table 7.3: the cluster to remove is a set of seven numerals rather than the re-
mainder consisting of three numerals, 1, 4 and 7. To tackle the issue, each part, 
both the remainder and cluster, should be clustered again (see case study 7.1). 

Case study 7.1. Repeated one-cluster clustering with repeated removal of 
background  

Let us, after each clustering step, consider the unclustered part as a fresh data 
set, a ground set, to perform the background similarity removal again. The results 
of this approach are presented in Table 7.4 in such a way that each cluster that has 
appeared on the right, in its column, has been clustered again. All the three modu-
larity clusters have produced themselves as their modularity subclusters. On the 
contrary, at the uniform criterion, each of the three-element clusters has produced 
a proper subcluster as shown in the further rows of the right-hand part of the table. 

Table 7.4. Partitions found at the symmetric Confusion data by sequentially ex-
tracting clusters one by one, recomputing the background similarities at each sub-
set to be analyzed.  



 358 

 

 

Modularity, set adjusted Uniform, mean set adjusted 
Ground set       Cluster        Ground set       Cluster 

0-9                     1 4 7 0-9                     1 4 7 
0 2 3 5 6 8 9       3 5 9 0 2 3 5 6 8 9       2 3 5 9 
0 2 6 8                0 6 8 0 6 8                   0 6 8 
1 4 7                      1 7 
3 5 9                      3 9 
0 6 8                      0 8 

To explain this phenomenon, let us take a closer look, say, at cluster {1,4,7}. Table 7.5 pre-
sents the original within cluster similarities as well as those found by subtracting the aver-
age similarity, for the uniform clustering, or the random interactions, for the modularity 
clustering. 

Table 7.5. Similarities between numerals 1, 4 and 7 according to Table 7.2 and, 
also, after subtraction of the background according to each, uniform and modular-
ity, criterion. 

 Raw similarities Mean subtracted Random interactions 
 similarities subtracted similarities 

   4      7      4         7   4          7 
1 171   329 -12.7     145.3 70.3     156.6 
4     51             -132.7            - 25.6 

 
The total sum of similarities in set {1,4,7}, the volume, according to the left 

part of table 7.5 is 1102=2*551 (factor 2 applies to make up for the absent lower 
triangle of the similarity matrix), of which entity 1 takes 45.4%, entity 4, 20.1%, 
and entity 7, 34.5%. The volume of entity 4, 20.1%, is by far the smallest of the 
three, which straightforwardly translates to the level of its random interactions: 
they are smaller than those of the others so that the subtracted part of entity 4’s 
similarities is relatively small. This is why the summary similarity of 4 in the 
right-hand part of the table is positive, c41+c47 = 70.3-25.6= 44.7 > 0, making 4 a 
welcome member of the cluster according to the modularity criterion. This is not 
so according to the uniform criterion: the summary similarity of 4 with two others 
is negative, b41+b47=-12.7 -132.7 = - 145.4<0, setting 4 apart from the rest. A 
similar effect is at work with entity 2: 2 is rather remote from anything else so that 
its similarities become negative when the average similarity is subtracted, which is 
not the case with the random interactions because the latter are by far smaller at 2 
than those at other entities. 

The analysis reported in case study 7.1 shows that the two criteria – or, better to 
say, the same criterion at the two different data pre-processing formulas – should 
be applied in different contexts: the uniform criterion is better when the meaning 
of similarity is uniform across the table, whereas the modularity criterion works 
better when the similarities should be scaled depending on the individual entities.  
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Case study 7.2. Summary clusters at ordinary network data 

Consider two network graphs on Figure 7.3, (a) and (b). The former’s cluster 
structure is rather simple – it consists of two connected components. There is no 
visible cluster structure in the graph (b). The latter graph consists of just one com-
ponent – but can the cluster structure hidden in it be discovered using a less rigid 
instrument than the concept of connected component? 

                            

 
Figure 7.3. Two graphs on a set of eight entities; that on the left consists of two 

components whereas that on the right has a few additional edges to make it just a 
component. 

An even less structured is a “cockroach” graph on Figure 7.4, taken from Guat-
tery and Miller (1998) as an example of a structure that is difficult for clustering. 

The results of runs AddRem clustering algorithm runs starting from every node 
for the modularity criterion at the cockroach network of Figure 7.4 are given in the 
left part of Table 7.6. 

                   
 
Figure 7.4. Less than an obvious cluster structure –  Cockroach network graph. 
Table 7.6. One cluster multiple solutions using the summary criteria at Cockroach network 
data in Figure 7.4. 
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Modularity as is and sequentially adjusted  Uniform with mean subtracted once 

Cluster    Criterion Ground set   Cluster Cluster        Criterion Ground set      Cluster 
1-12      4 5 6 10 11 12   4 5 6 10 11 12    8.09 1-12            5 6 11 12   5 6 11 12       5.15 
1-3 7-9                1 2 3 2 3 4  5  10 11    6.09 1-4 7-10     1 2 3 4 10 1 2 3 4 5 6     4.69 
7 8 9                    7 8 9 4 5 8  9  10 11    6.09 7 8 9                 7 8 9 3 4 7 8 9 10   4.69 

3 4 5  9  10 11    6.09  
1 2 3  4 5 6         4.09 

 
There are three highly overlapping clusters, two of them reflecting the topology 

of the graph with the winning cluster embracing four nodes in the right-hand side 
of graph in Figure 7.4.  The second column reflects an attempt at finding a parti-
tion using one-by-one clustering: after first cluster is found, its entities are re-
moved, and the method is applied to the remaining part of the data matrix, with 
the random interactions readjusted to the topology of the ground set to be ana-
lyzed. 

Similar attempts, but with the uniform criterion with the noise threshold set at 
the average similarity value, are presented in the right part of the table. The clus-
ters demonstrate five patterns of which the lead, 4-5-6-10-11-12, embracing the 
right-hand half of the graph, concurs with the human view of the topology (see 
Luxburg 2007). After removal of this cluster, the algorithm finds remaining con-
nected components – see the clusters presented in the right-hand column of Table 
7.4. In contrast to the modularity criterion, the value of threshold subtracted from 
the data is kept the same through all the iterations because of both flat values of 
similarities and the thrust of the uniform criterion towards to a unified scale across 
the entire network.  

Good clustering results found here with the uniform criterion are not easy to 
match with other clustering methods, which supports the view that the ordinary 
graphs, that is, flat networks, could be a natural niche at which the uniform crite-
rion, with a flat value subtracted, can produce good results. 

Affinity data are similarities between entities in an entity-to-feature table. They 
are usually defined by a kernel function depending on entity-to-entity distances 

such as a Gaussian kernel function 2
( , )

2( , )
d x y

G x y e σ
−

=  where d(x,y) is the 
squared Euclidean distance between x and y if x≠y. The denominator 2σ2 may 
greatly affect results and is subject to the user’s choice. In our experiences, consis-
tent results are obtained with 2σ2=1/2 corresponding to σ=1/2 after each feature 
has been normalized by its range.  

One more parameter at defining the affinity data is the distance threshold, R, 
such that the similarity between entities is defined as 0 if the distance between 
them is greater than R. The usage of this parameter appears highly successful in 
such areas as image analysis (Shi and Malik 2000).  
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Worked example 7.2. Similarity clusters at affinity data 

The affinity data for eight entities in Company data table (range normalized with the last 
three columns further divided by √3, see section 4.1) are presented in Table 7.7. Similarity 
values that are greater than 0.15 are highlighted in bold – in fact, they lead to a threshold 
graph presented on Figure 7.3 (a). The two affinity values that are at odds with the three-
product cluster structure S={{1,2,3}, {4,5,6}, {7,8}}are underlined: the absent within-
cluster link (4,5) and the unwanted between-cluster link (6,7). 

Table 7.7. Affinity similarities between eight companies in the Company dataset in Ta-
ble 5.1. Those greater than 0.15 are highlighted in bold 

2          3             4             5            6            7                8 
1
2
3
4
5
6
7

 0.3623    0.1730    0.1005    0.0123    0.0111    0.0101    0.0024 
           0.2143    0.0447    0.0261    0.0025    0.0224    0.0080 
                          0.0207    0.0989    0.0252    0.0266    0.0085 
                                         0.1424    0.1752    0.0880    0.0073 
                                                        0.2248    0.1918    0.0236 
                                                                       0.0347    0.0011 
                                                                                      0.2982 

 
This similarity matrix after subtraction of the random interactions background is presented 
in Table 7.8; the positive entries are highlighted in bold and those at odds with the three-
product cluster structure are underlined.    

The results of AddRem clustering for the affinity data are presented in Table 
7.9. This time, both – modularity and uniform – criteria give similar results: two 
clusters only, with cluster of product A separated from the rest. The only differ-
ence is that the modularity criterion assigns a larger value to the combined cluster 
of B and C products, whereas the uniform criterion with the subtracted average af-
finity value gives a larger value to the cluster of A product.  
Table 7.8. Table 7.7 data after subtraction of the background of the random interactions. 

      2             3             4             5            6            7                8 
1
2
3
4
5
6
7

 0.2654    0.0922    0.0180   -0.0903   -0.0565   -0.0857   -0.0473 
           0.1325   -0.0389   -0.0779   -0.0660   -0.0745   -0.0424 
                         -0.0490    0.0123   -0.0319   -0.0543   -0.0335 
                                          0.0540    0.1169    0.0055   -0.0356 
                                                         0.1523    0.0892   -0.0297 
                                                                       -0.0330   -0.0341 
                                                                                        0.2484 

 
Here both the uniform and modularity criteria apply to the background adjusted at the set at 
which the method applies. In contrast to the previous case, it is the modularity function that 
finds a good solution, whereas the uniform criterion cannot find the cluster of two product 
C companies, making each of them a singleton. 

Table 7.9. One cluster and one-by-one partition structures found at the Com-
pany affinity data in Table 7.7. 



 362 

Modularity  Uniform, π=Mean 

One cluster One-by-one clustering One cluster One-by-one clustering 
Cluster   Criterion Ground set      Cluster Clu       Criterion Ground set      Cluster 

1 2 3         1.057 1-8                    1 2 3 4 5 6 7 8     1.068 1-8                   1 2 3 
4 5 6 7 8   0.901 4-8                     4 5 6 7 1 2 3           0.980 4-8                   4 5 6 

4-7                     4 5 6 7 8                      7 8  

F7.1 One cluster summary criterion and its properties: 
Formulation 

Given a cluster S, its within-cluster similarities can be characterized by the sum-
mary value  

,
( , ) ij

i j S
a S S a

∈

= ∑  .         (7.1) 

Obviously, the greater is the sum (7.1), the better the cluster S.  
Given a non-negative matrix A, the maximum of a(S,S) is obviously reached at the 
universal cluster S=I, because then the sum (7.1) is the greatest possible. Provided 
that all rows/columns have at least one positive entry, S=I is the only maximizer 
of (7.1). Does it mean that the summary criterion should be discarded as leading to 
no nontrivial clusters as is conventionally suggested? 
Not at all! Just some background interrelations should be removed to help sharp-
ening the portrait of a cluster structure hidden in the data, as illustrated in Fig. 7.2. 
Two types of background data are: 

(i) a constant similarity level π that has meaning of a “soft” similarity 
threshold (Mirkin  1987, 1996) 

(ii) a “random” assignment of similarity based on the relative “strength” of 
entities involved (Newman and Girvan 2004, Newman 2006). 

 
The maximum of the summary similarity criterion (7.1) applied to matrix A af-

ter a similarity shift π is subtracted will be referred to as the uniform criterion: 

,
( , ) ( )ij

i j S
u S aπ π

∈

= −∑                                                (7.2) 

Obviously, this criterion is but of maximization of b(S, S) for matrix B=(bij) with 
bij=aij –π.  

The meaning of the shift π can be derived from the criterion b(S,S): pair {i, j} 
should be put in cluster S if  bij>0, that is, aij >π, and should not if aij <π . That 
means that is a “soft” similarity threshold encouraging strong similarity in S and 
weak similarities out of S.  The value of threshold can be defined using external 
information (Mirkin et al. 2010). 
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The background similarity in the case (ii) needs no external information. In this 
approach, matrix A is treated as a contingency table (section 1.3). Consider the 
summary values ai+=Σj∈I aij, and a++=Σ ai,j∈I ij. Under the assumption that there is 
random interaction between entities i and j, which is proportional to these sum-
mary values, the background similarity is defined as the product k = aij i+aj+/a++; 
the denominator is added to return the product to the original scaling of similari-
ties in A. The within-cluster summary similarity criterion (7.1) applied to matrix A 
after  the “background” similarity is subtracted is referred to as the modularity cri-
terion: 

, ,
( ) ( ) ( / )ij ij ij i j

i j S i j S
m S a k a a a a+ + ++

∈ ∈

= − = −∑ ∑   (7.3)                                            

Obviously, this criterion is but of maximization of c(S, S) for matrix C=(cij) where 
cij=aij – ai+aj+/a++.  
Let us briefly analyze some properties of these versions of the summary criterion. 
For the case of u(S, π) in (7.2), let us focus on the case when the diagonal entries 
are not considered so that i≠j in (7.1): 
                                       (7.4) 

, ,
( , ) | | (| | 1)ij ij

i j S i j S
i j i j

u S a a S Sπ π π
∈ ∈

≠ ≠

= − = − −∑ ∑

where |S| denotes the number of elements in S. When the diagonal elements are 
present, the right-hand item in (7.4) would be π|S|2 rather than π|S|(|S|-1).  
An irregular structure of similarities may prevent the threshold π to be a separator 
between all within-cluster and out-of-cluster similarities, but it certainly is on av-
erage. Indeed, let us denote the average similarity of an i∈I and S⊆I by a(i,S) - this 
may be referred to as the uniform attraction of i to S. Obviously, a(i,S)=Σ 
j∈Saij/(|S|-1) if i∈S, and a(i,S)=Σ j∈Saij/|S| if i∉S, because of the assumption that 
the diagonal similarities aii are not considered.  
Let us refer to a cluster S as uniformly π-tight if, for any entity i∈ I, its uniform at-
traction to S is greater than or equal to π if i∈S and it is less than π, otherwise. 
Then the following statement, in support of the claim that an optimal cluster S 
should be tight, holds. 
If S maximizes criterion u(S, π) in (7.4) then S as uniformly π-tight, that is, a(i,S)≥ 
π for all i∈S, and a(i,S)≤ π for all i∉S.  
To prove it, let us change the state of an entity i* with respect to cluster S, that is, 
add i* to S if it does not belong to S or remove it from S if it does. Now take the 
difference between u(S, π) and the result of the state change, that is, u(S−i*,π) if 
i*∈S, or u(S+i*, π) if i*∉S where S−i* and S+i* denote S with i* removed or 
added, respectively: 

u(S,π) − u(S−i*, π) = 2(Σj∈Sa  − π(|S|-1)),  i*j

   u(S,π) − u(S+i*, π) = = 2(−Σj∈Sa  +π|S|)  (7.5) i*j
 
Equations (7.5) are quite obvious if one consults Figure 7.5: all the differences be-
tween u(S, π) and its value after the change of state of i* come from the boxed 
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fragments of i*th row and i*th column. Since S is assumed to be optimal, both of 
the differences in (7.5) are non-negative. Take, for example, that on the right: 
−Σj∈Sa  +π|S| ≥ 0 for i*∉ S. Then π ≥ Σi*j j∈Sai*j/|S| =a(i*,S) – the statement is 
proven for i*∉ S. In the case of i*∈S, take the difference on the left in (7.5); its 
being non-negative implies that a(i*,S) ≥π in this case, which completes the proof. 
In fact, a wider statement is proven. Let us refer to S as being locally optimal if, 
for any entity i∈ I, u(S, π) does not decrease under the change of its state with re-
spect to S.  The proof warrants that any locally optimal cluster is uniformly π-
tight. 
 
A similar statement can be proven for the modularity criterion m(S) in (7.3). For 
the sake of simplicity, assume that the diagonal entries are all zeros. Let us con-
sider the summary similarity of S within and outside, 

 
                                                ( ) ij i

i S j I i S
a S a a +

∈ ∈ ∈

= =∑∑ ∑  

and refer to it as the volume of S. In particular, an entity i’s volume will be 
a(i)=a  and the universal cluster I’s volume, a(I)=a(I,I)=ai+ ++ .Then criterion (7.3) 
can be rewritten as  

m(S)=a(S,S)-a(S)2/a(I).                          (7.3′) 

Let us introduce the modularity attraction of an entity i∈I to S, m(i,S)= Σi∈Saij/ai+, 
and the relative volume of S in I, v(S)=a(S)/a(I). Then the relative volume of an 
entity i would be v(i)= ai+/a++. Let us refer to a cluster S as being modularity tight 
if, for any entity i∈ I, its modularity attraction to S is greater than or equal to the 
relative volume of S, up to a half of v(i), if i∈S, and it is less than that, otherwise. 

 
 

 S 
 
 
      i* 

    S       
i*

 
 
 
 
 
 
 
 
 

Figure 7.5. A schematic representation of the similarities with respect to cluster S 
under the assumption that entities are sorted so that elements of S are followed by 
i* followed by the rest; then entries related to entity i* are in the boxed row and 
column on S’s margin. 
That is, S is modularity tight if m(i,S)≥ a(S)/a(I)-v(i)/2 for all i∈S, and m(i,S)≤ 
a(S)/a(I)+v(i)/2 for all i∉S. Then the following statement is true. 
If S is a local maximizer of criterion m(S) in (7.3) then S is modularity tight.  



 365 

To prove the statement, let us take i* and change its state with respect to S. Then 
the increment of criterion m(S) expressed in terms of cij=aij – ai+aj+/a++ will be 
equal to 

* * * * * * *( *) ( ) 2 2 ( ( ) / ( )) / 2 ( )).i j i i i i j i i
j S j S

m S i m S c c a a a a S a I a a I+ + +
∈ ∈

± − = ± + = ± −∑ ∑ ∓        

  (7.6) 

That is,  
 

*( *) ( ) 2 ( ( *, ) ( ) ( *) / 2).im S i m S a m i S v S v i+± − = ± − ∓
 
The proof follows from the fact that the increment must be non-positive at a lo-
cally optimal S. 

C7.1 Local algorithms for one cluster summary criterion: Computation 

At a preprocessed, by subtracting background similarities, similarity matrix 
A=(aij) the summary criterion is rather easy to (locally) optimize by adding enti-
ties one-by-one starting, say, a most linked couple i and j, and at each step adding 
just one entity i* - that one which is most similar to S. The computation stops 
when the summary similarity stops increasing, which will be the case if many of A 
entries are negative. There are two issues about this algorithm:  

• Starting configuration – the pair of entities of the maximum similarity. 
This may not work in some cases such as the case of an ordinary graph 
matrix in which all nonzero entries are the same. Also, this choice is not 
flexible and may lead to a clearly suboptimal cluster and missing larger 
subsets whose elements are well connected but with similarity levels 
slightly smaller than the maximum. 

• Addition with no removals. This can be of an issue because at a later 
stage of collecting a cluster some entities, picked up in the very begin-
ning, can be far away from the later arrivals and should be removed at 
later stages.  

 
The following algorithm AddRem tackles both of these as follows. To not get 
stuck in a wrong place, it runs as many times as there are entities, each time start-
ing from another singleton S. To have an opportunity to remove a wrong element, 
at each step the algorithm considers the increment of the criterion caused by the 
change of state of every entity with respect to the current cluster. To do so, N-
dimensional 1/-1 vector z=(z ) is maintained such that zi i=1 if i belongs to the cur-
rent cluster and zi=-1 if not. Then the change of state of i∈I with respect to the 
cluster is equivalent to changing the sign of zi. The change of the criterion value 
because of this can be expressed as follows. Denote by z the vector at current clus-
ter S and by z(i) the result of change of sign of zi in it, so that S(i)=S-i if zi =1 and 
S(i)=S+i if zi =-1. This makes the operations of addition or removal of an entity to 
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or from the current cluster computationally similar. The increment of the summary 
criterion after the change is equal to 

( ) 2 i ij
j S

i z aΔ
∈

= − +∑ iiaδ            (7.7) where δ=1 if the diago-

nal entries are taken into account and δ=0, otherwise.  

AddRem(i) algorithm 

Input: matrix A=(aij); output: cluster S related to entity i and value of the summary 
criterion. 
1.Initialization. Set N-dimensional z to have all its entries equal to -1 except for zi 
=1, the summary similarity equal to δaii.  
2.General step. For each entity i∈I, compute the value Δ(i) according to (7.7) and 
find i* maximizing it.  
3.Test. If Δ(i*)>0, change the sign of zi* in vector z, zi*⇐−zi*, after which recalcu-
late the sum by adding Δ(i) to it. (In the case of large data, computing the sum-
mary values in (7.7) can be costly. Therefore, a vector of these values should be 
maintained and dynamically changed after each addition/removal step.), and go to 
2. Otherwise, go to 4. 
4.Output S and the summary criterion value. 
A tightness property of the resulting cluster S depending on the pre-processing 
step, at any starting i∈I, holds as established in section F7.1 because S is locally 
optimal.  
Algorithm AddRem(i) utilizes no ad hoc parameters, except for the i of course, so 
the cluster sizes are determined by the process of clustering itself. Multiple runs of 
AddRem(i)  at different starting points i allow to (a) find a better cluster S maxi-
mizing the summary similarity criterion over the runs, and (b) explore the cluster 
structure of the dataset by analyzing both differing and overlapping clusters. 

7. 2 Two cluster case: cut, normalized cut and spectral clustering 

7.2.1 Minimum cut and spectral clustering 

P7.2.1 Minimum cut and spectral clustering: Presentation 

In this section, we turn to the issue of dividing an entity set supplied with a 
similarity matrix in two most isolated, or minimally connected, parts. The connec-
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tion, if measured by the sum of similarities between the parts, is referred to as the 
cut. An illustration of such a partition is presented on Figure 7.6 that displays the 
division of the similarity matrix in four blocks caused by partition of the entity set 
in two parts, clusters S1 and S2. The diagonally lined blocks pertain to the within 
cluster similarities and those lined vertically and horizontally to the between clus-
ter similarities. Since the total sum of similarities is constant, the minimum cut 
corresponds to the maximum sum of within-cluster similarities. This means that 
the minimum cut problem is akin to the problem of maximization of the within 
cluster summary similarity considered in the previous section. The difference is 
that now we are looking at splitting the set into most separated parts rather than 
finding just one tightly related one. A similar difference is between the concepts of 
a tight Anomalous Pattern cluster in section 5.1.5 and the maximum split clusters 
in divisive clustering, section 6.3. 

  
S1

 
S2

  S1                           S2

                                    
Figure 7.6. The structure of the similarity matrix regarding partition {S1, S2} of 

the entity set, which is assumed sorted so that elements of S1 stand first. The 
blocks out of the main diagonal show similarities between S1 and S2, whereas 
those on the main diagonal refer to similarities that are within the parts. 

If a similarity matrix A is conventionally non-negative, the criterion of mini-
mum cut does not work: the optimum cut will always produce a most unbalanced 
partition: a singleton, that one which is least summarily related to the others, and 
the rest. Yet the criterion is workable if a background “noise” has been subtracted 
from the similarities, which brings us back to the uniform and modularity criteria. 
These criteria maximize the summary within cluster similarities. The former ap-
plies when a constant, typically the average similarity, is subtracted from all the 
similarities. The latter applies after the random interactions proportional to the 
products of the entity volumes, have been subtracted.  

Although we could apply the same AddRem algorithm, the only difference be-
ing that this time the criterion is the sum of within cluster similarities for both 
clusters, in this section we turn to the eigenvector, or spectral, perspective that is 
implied by a reformulation of the problem in terms of the Rayleigh quotient. As 
proven in section F7.2.1 below, the minimum cut problem is equivalent to finding 
such (1,-1) vector z that maximizes the quotient λ=zT TAz/z z. When relaxed to arbi-
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trary z’s, the problem is known to be of finding the maximum eigenvalue λ and 
corresponding eigenvector z of matrix A; this eigenvector will be referred to as the 
first eigenvector. Therefore, it is only natural to cluster entities according to the 
signs of the eigenvector: those i’s with positive components go to S1 while i’s with 
negative components go to S2. Although not necessarily an optimal partition, this 
is a practical and, in most cases, good solution. 

Worked example 7.3. Spectral clusters for Confusion dataset 

Table 7.10 presents results of sequential cuts according to the first eigenvectors 
on the sets resulting from the previous cuts. As before, the modularity transforma-
tion leads to three discernible clusters of numerals, {1, 4, 7}, {6, 8, 0} and {2, 3, 
5, 9}, whereas the uniform data transformation, by subtracting the mean of the 
similarities on the current set, convincingly separates 2 from cluster {2, 3, 5, 9} – 
the remaining set {3,5,9} cannot be further divided because the maximum eigen-
value at that is negative, thus no positive value of the criterion at the division. 
Table 7.10. First eigenvectors according to the modularity and uniform data preprocessing 
options.   

Modularity Uniform, current mean subtracted 
Set 0 – 9 2 3 5 6  

8 9 0 
2 3 5 9 0 – 9 2 3 5 6

 8 9 0 
2 3 5 9 3 5 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

-0.57 
 0.08 
 0.07 
-0.27 
 0.21 
 0.26 
-0.53 
 0.34 
 0.19 
 0.21 

 
 0.06 
 0.51 

  
 0.22 
-0.36 

 
-0.43 
 0.43 
-0.43 

 
0.5 
0.5 

 
0.5 

 
 
 

0.5 
 

 0.52 
-0.08 
-0.12    
 0.25 
-0.24 
-0.29 
 0.49 
-0.38 
-0.25 
-0.23 

 
 0.07 
 0.50 

 
 0.22 
-0.36 

 
-0.44 
 0.43 
-0.44 

    
 0.46 
-0.50 

 
-0.29 

 
 
 

-0.68 

 
     

0.74 
 

-0.58 
 
 
 

0.35 
 

λ  703.7 189.6 0.0 358.7 189.6 83.8 -46.4 
 

Worked example 7.4. Spectral clusters for Cockroach network 

Table 7.11 presents results of the first two cuts according to the spectral clusters derived 
at the modularity and uniform data transformations. They differ on nodes 4 and 10 at which 
they are ether merged with the thicker end of the network, at the uniform clustering, or not, 
– at the modularity clustering. At the second cut, they go to different parts, according to the 
network topology on Figure 7.4. 

Table 7.11. First eigenvectors according to the modularity and uniform data preprocess-
ing options at Cockroach network: two cuts.  
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Modularity Uniform, current mean 
subtracted 

Set 1 – 12 1-4 7-10 1-12 1-3 7-9 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

    0.21 
    0.32 
    0.24 
    0.00 
   -0.37 
   -0.40 
    0.21 
    0.32 
    0.24 
    0.00 
   -0.37 
   -0.40 

-0.30 
-0.46 
-0.41 
-0.16 
 
 
 0.30 
 0.46 
 0.41 
 0.16 

   -0.22 
   -0.26 
   -0.10 
    0.22 
    0.46 
    0.34 
   -0.22 
   -0.26 
   -0.10 
    0.22 
    0.46 
    0.34 

 0.3536 
 0.5000 
 0.3536 
  
 
 
 -0.3536 
 -0.5000 
 -0.3536 

λ     1.71 1.53     1.88 1.41 
 

Worked example 7.5. Spectral clustering of affinity data 

The spectral clustering approach is much successful on the affinity data for the Company 
dataset – the three clusters corresponding to the three products are recovered well on both 
data transformation options, the uniform and the modularity (see Table 7.12). The uniform 
version does not divide the B product cluster {4, 5, 6} in smaller parts because all compo-
nents of the first eigenvector here have the same sign.     

Table 7.12. First eigenvectors according to the modularity and uniform data preprocess-
ing options at Company affinity data set.   

Modularity Uniform, current mean sub-
tracted 

Set 1 – 8 4-8 4-6 1 – 8 4-8 4-6 
1 
2 
3 
4 
5 
6 
7 
8 

0.50 
0.51 
0.32 

    -0.13 
    -0.29 
    -0.24 
    -0.38 
    -0.30 

 
 
 
0.35 
0.25 
0.48 

    -0.45 
    -0.62 

 
 
 
0.58 
0.58 
0.58 
 

 0.53 
 0.55 
 0.35 
-0.09
-0.23
-0.20
-0.33
-0.29

 
 
 
 0.36 
 0.27 
 0.49 
-0.43
-0.61

    
  
 
-0.40
-0.62
-0.68
 
 

λ 0.41 0.21 0.00  0.41 0.21 0.01 
 

Q.7.1. Consider an agglomerative clustering algorithm, in which the similarity be-
tween clusters is taken to be the sum of between cluster similarities. Prove that 
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(a) this algorithm maximizes the summary within cluster similarity criterion; 

(b) the algorithm stops when all between cluster summary similarities are nega-
tive (which will happen if the similarity matrix has been preprocessed with either 
modularity or uniform transformation).  

F7.2.1 Minimum cut and spectral clustering: Formulation 

Given a symmetric similarity matrix A=(aij) on set I, consider the issue of di-
viding I in two parts, S1 and S2, in such a way that the similarity between S1 and S2 
is minimum while it is maximum within them. This requirement can be explicated 
most naturally by using the summary similarity criterion. Using indices f, g=1,2, 
let us denote the summary similarity “between” Sf and S by a(Sg f, S ) so that a(Sg f, 
S ) = .  

f g

ij
i S j S

a
∈ ∈
∑ ∑g

Then, obviously, a(S1, S1) is the summary similarity within S1 and a(S1, S2) = 
a(S2, S )  is the summary similarity between S1 1 and S2; the equation follows from 
the symmetry of A.. Moreover, the sum a(S1, S )+ a(S1 2, S2)+ a(S1, S )+ a(S2 2, S1) is 
equal to the constant sum  a(I) of all the similarities, as Figure 7.6 clearly demon-
strates. The common value a(S1, S2) of the between cluster similarity is referred to 
as a cut. Then a natural clustering criterion, the minimum cut, corresponds to the 
maximum of the summary within cluster similarity 

                aw(S1,S )= a(S2 1, S )+ a(S1 2, S ),                        (7.7)  2

because aw(S1,S )=a(I) – 2a(S2 1,S2), which shows that the minimum between-
cluster summary similarity simultaneously provides for the  maximum within clus-
ter summary similarity. Yet the criterion of minimum cut usually is not considered 
appropriate for clustering because, at a nonnegative A, it obviously reaches the 
minimum when the out-of-diagonal blocks are reduced to just mere one line and 
column, independently of the structure of the similarities, leading thus to a most 
unbalanced partition: a singleton and the rest, which is not what should be consid-
ered a proper aggregation. Yet with pre-processing of the similarities by subtract-
ing either a constant threshold or the random interactions as described in section 
7.1, the structure of the similarity matrix becomes identifiable with the minimum 
cut criterion. Unfortunately, when A-entries can be both positive and negative, the 
problem of minimum cut becomes computationally intensive, referred to as  NP-
complete in the theory of combinatorial optimization ( see, for example, Johnson-
baugh and Schaefer 2004). This implies that local or approximate algorithms are a 
welcome development for the problem. 

One of such algorithms is AddRem from section 7.1 because collecting a clus-
ter is equivalent to splitting the set in two parts, the cluster and the rest, if the cri-
terion of maximum summary within cluster similarity is extended to cover both 
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clusters. Of course, the operation of addition-removal loses its one-cluster asym-
metry and becomes just operation of exchange between the two clusters. 

Another approach comes from the spectral theory on matrices, which is devoted 
to the analysis and computation of eigenvalues and corresponding eigenvectors for 
square matrices. Indeed, define N-dimensional vector z=(z ) such that zi i =1 if i∈S1 
and zi = -1  if i∈S2. Obviously, zi

2=1 for any i∈I so that zTz=N which is constant at 
any given entity set I. On the other hand, zTAz= a(S1, S1)+ a(S2, S2) –2 a(S1, S2)= 
2(a(S1, S1)+ a(S2, S2)) – a(I), which means that criterion (7.7) is maximized when 
zTAz is maximized, that is, the problem of finding a minimum cut is equivalent to 
the problem of maximization of Rayleigh quotient 

( )
T

T

z Wzg z
z z

=                       (7.8) 

with respect to the unknown N-dimensional z whose components are either 1 or 
−1. Matrix W is A pre-processed into either B, with subtraction of a threshold, or 
C, with subtraction of the random interactions (see section 7.1 for more detail) or 
using a different transformation. 

As is well known, the maximum of (7.8) with respect to arbitrary z is equal to 
the maximum eigenvalue of W and it is reached at the corresponding eigenvector 
referred to as the first eigenvector. This brings forth the idea that is referred to as 
spectral clustering: Find the first eigenvector as the best solution and then ap-
proximate it with a (1, -1)-vector by putting 1 for positive components and -1 for 
non-positive components – then produce S1 as the set of entities corresponding to 
1, and  S2, corresponding to -1. 

C7.2.1 Spectral clustering for the minimum cut problem: 
Computation 

To find the maximum eigenvalue and corresponding eigenvector for a symmet-
ric similarity matrix W, MatLab command [Z,L]=eig(W) should be executed. Re-
sulting L is a diagonal matrix with eigenvalues located on the diagonal in the as-
cending order, so that the last one is the maximum eigenvalue. Accordingly, the 
last column is the corresponding, “first”, normed eigenvector. Its positive compo-
nents correspond to one cluster, and the non-positive components to the other. 
Here is a sequence of commands to determine the split parts S1 and S2: 

>> [Z,L]=eig(W); 
>>(n,n)=size(L); 
>>z=Z(:,n); 
>>S{1}=find(z>0); S{2}=find(z<=0); 
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If W is non-negative then the first eigenvector is proven to be not negative ei-
ther – no partition of I can emerge in such a situation.  

7.2.2 Normalized cut and Laplace transformation 

P7.2.2 Normalized cut: Presentation 

The concept of normalized cut is a relatively recent development started by Shi 
and Malik 2000. It belongs to a series of graph cutting criteria that balance the 
cluster sizes by normalizing the sums of within cluster similarities by the size-
dependent values. Given a similarity matrix A, let us take the volume of S⊆I, the 
summary similarity in rows i∈S, a(S)= Σ ai∈S i+. Then the normalized cut over a 
partition {S1, S2}is defined as a(S1, S2)/a(S )+a(S1 1, S )/a(S2 2). This is to be mini-
mized over all splits {S1, S2} of set I. An equivalent criterion would maximize the 
sum of normalized within cluster similarities, a(S1, S )/a(S )+a(S1 1 2, S2)/a(S2) – the 
two criteria sum up to 2. 

Yet the normalized cut brought forward a less intuitive type of data preprocess-
ing, the Laplace transformation of a similarity matrix, W, which may be in its 
original format A or with a constant threshold subtracted, B, or with the random 
interaction subtracted, C, into its Laplacian, L. In its normalized form, this trans-
formation normalizes every similarity wij by dividing it by the square root of the 
product of i and j volumes, /ij i iw w w+ +

, and then subtracts the resulting matrix 

from the identity matrix which has all its entries zero except for unities on the di-
agonal (see the lower triangle matrix in Table 7.13). With this transformation we 
are into the realm of spectral clustering again. The Laplacian matrix is proven to 
have all the eigenvalues non-negative. Besides, L has a specific minimum eigen-
value – the zero. Yet the next minimum eigenvalue and the corresponding eigen-
vector provide for a relaxation of the minimum of normalized cut problem refor-
mulated in terms of the Rayleigh quotient for the Laplacian matrix (see in part F 
of this section). Then split {S , S1 2} can be found by using this second minimum ei-
genvector in the same way as in the previous section: S1 is defined by indices of 
all positive components and S2 of all negative components. 

Worked example 7.6. Normalized cut for Company data 
To show how this works, consider the affinity data for Company data set in Table 7.13. 

Table 7.13. Affinity similarities between eight companies in the Company data in Table 
5.1 (upper triangle) and the result of the normalized Laplace transformation (lower triangle)  
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 1                 2              3             4              5             6             7             8 
1 
2 
3 
4 
5 
6 
7 
8 

1           0.3623    0.1730    0.1005    0.0123    0.0111    0.0101    0.0024 
-0.5360        1          0.2143    0.0447    0.0261    0.0025    0.0224    0.0080 
-0.2803   -0.3450         1        0.0207    0.0989    0.0252    0.0266    0.0085 
-0.1611   -0.0712   -0.0361        1         0.1424    0.1752    0.0880    0.0073 
-0.0177   -0.0372   -0.1548   -0.2207         1        0.2248    0.1918    0.0236 
-0.0196   -0.0044   -0.0486   -0.3343  -0.3845       1          0.0347    0.0011 
-0.0150  -0.0332   -0.0431   -0.1411   -0.2759   -0.0614        1         0.2982 
 0.0050   -0.0164   -0.0191   -0.0162   -0.0471   -0.0026   -0.6158         1     

 
and the eigenvector corresponding to the second minimum eigenvalue 0.32, as ex-
pected, well separates the first three entities, A-product companies.  

Yet the Laplacian matrix by itself, unlike the original affinity matrix, gives no 
useful indications on the cluster structure underlying its entries. One more trans-
formation takes care of that. The Laplacian Pseudo Inverse (Lapin, for short) 
transformation takes the spectral decomposition of the Laplacian, inverses the 
non-zero eigenvalues λ into 1/λ, and returns a pseudo-inverse Laplacian presented 
in the lower triangle of Table 7.1.4.  

Table 7.14. Affinity similarities between eight companies as in Table 7.13 (up-
per triangle; entries larger than 0.15 are highlighted in bold; those not fitting in the 
structure underlined) and the result of Lapin transformation (lower triangle, posi-
tive entries highlighted in bold, that not fitting underlined)  

 1                 2              3             4              5             6             7             8 
1 
2 
3 
4 
5 
6 
7 
8 

0.3623     0.1730    0.1005    0.0123    0.0111    0.0101    0.0024 
 0.4734                    0.2143    0.0447    0.0261    0.0025    0.0224    0.0080 
 0.2221    0.2677                   0.0207    0.0989    0.0252    0.0266    0.0085 
-0.2073   -0.2719   -0.2405                   0.1424    0.1752   0.0880    0.0073 
-0.4281   -0.4314   -0.2577    0.0190                   0.2248    0.1918    0.0236 
-0.3534   -0.3839   -0.2638    0.1563   0.1984                    0.0347    0.0011 
-0.5430   -0.5337   -0.4076   -0.1213   0.0457   -0.1020                   0.2982 
-0.4440   -0.4316   -0.3385   -0.1650 -0.0504    -0.1478   0.6003                  

 
 

One can easily see that the cluster structure is more pronounced in the Lapin matrix than it 
is in the original affinity matrix. First, there is no need for guessing a right threshold value 
to subtract: it is 0 here. Second, there is only one not-fitting entry here, (5,7), but it would 
not make any difference anyway because it is rather small in comparison with the other 
negative entries (6,7) and (4,7) linking item 7 to B-product cluster, or entry (5,8) linking 
item 5 to C-product cluster. 

One more result of the Lapin transformation is that the eigenvalue to look for is the 
maximum one, and it is much better separated from the rest because of the inversion (see 
Table 7.16). The corresponding eigenvector does not change. 

Indeed the three product based clusters, { 1, 2, 3}, {4,5,6}, {7,8}, are found with both 
the summary clustering criterion and spectral approach applied to the Lapin transformed 
Company affinity data. 
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Table 7.16. Reciprocal non-zero eigenvalues of the Laplacian and Lapin matri-
ces corresponding to the same eigenvectors. 

Eigenvalue labels I          II        III        IV     V        VI       VII   
Normalized Laplacian 0.32    0.59    1.11    1.35    1.40    1.55    1.67 
Lapin 3.08    1.70    0.90    0.74    0.71    0.65    0.60 

 

Worked example 7.8. Failure of spectral clustering at Cockroach network 

Lapin matrix for Cockroach network Figure 7.4 is presented in Table 7.16. It manifests a 
rather clear cut cluster structure embracing three clusters, {1,2,3,4}, {7, 8, 9, 10}, {5,6, 11, 
12}. Indeed, the positive entries are those within the clusters, except for two positive – but 
rather small – entries, at (4,5) and (10,11). Yet the first eigenvector reflects none of that; it 
cuts through by separating six nodes {1,2,3,4,5,6} (negative components) from the rest 
(positive components). This is an example of a situation in which the spectral approach 
fails: the normalized cut criterion at the partition separating the first 6 nodes from the other 
6 nodes is equal to 0.46, whereas its value at cluster {5, 6, 11, 12} cut from the rest is 0.32. 
The same value of the criterion, 0.32, is attained at cluster {4,5,6,10,11,12} cut from the 
rest. These two cuts are optimal according to the criterion, and the spectral cut is not. 

Table 7,16. Lapin similarity data between nodes of the cockroach network in Figure 7.3; 
the positive entries are highlighted in bold. 

  2          3      4          5          6        7        8       9       10       11        12 
2.43   1.18   0.05  -0.52   -0.58  -0.69  -0.92  -0.75  -0.59   -0.69   -0.63 1 
          1.75   0.16  -0.64   -0.74   -0.92  -1.22  -0.99  -0.74  -0.88   -0.81 2 

     0.44   -0.36   -0.51  -0.75  -0.99   -0.76  -0.46  -0.60   -0.58 3 
                 0.14   -0.15  -0.59 -0.74  -0.46   0.02 -0.16  -0.24 4 
                             0.68  -0.69 -0.88  -0.60  -0.16  0.46    0.44 5 
                                      -0.63 -0.81  -0.58  -0.24  0.44    0.94 6 
                                                  2.43   1.18   0.05 -0.52  -0.58 7 
                                                            1.75   0.16 -0.64  -0.74 8 
                                                                      0.44 -0.36   -0.51 9 
                                                                                           0.14  -0.15 10 

11                                                                                                        0.68 
 

Case study 7.3. Circular cluster exposed by Lapin transformation 

To further demonstrate the formidable ability of the Lapin transformation in manifesting 
clusters according to human intuition, let us consider the 2D set presented on Figure 7.7.  

This set has been generated as follows. Three 100x2 data matrices, a1, a2 and a3, were 
generated from Gaussian distribution N(0,1). Then matrix a2 was normed row-wise into b, 
so that each row in b is a 2D normed vector, after which matrix c has been defined as 
c=0.5∗a3+8∗b. Its rows form a ring-wise shape on the while rows of a1 fall into a heap in 
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the circle’s center as presented on Figure 7.7. Then  a1 and c are merged into a 200x2 ma-
trix X, in which a1 takes the first 100 rows and b the next 100 rows.  

The conventional data standardization methods would not change the picture, and con-
ventional clustering procedures like K-Means clustering would not be able to separate the 
ring as a whole. The single link clustering will be able to separate these two clusters, which 
would once again reminds as of a rift between the data approximation clustering and graph 
theoretic approaches. Yet the Laplace transformation allows us to put this dataset into the 
data approximation context too. 
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Figure 7.7. Two intuitively obvious clusters that are difficult for conventional ap-

proaches: stars in the heap and dots in the ring. 

The data is first transformed into a 200×200 affinity similarity matrix, which is then 
Lapin transformed into a final similarity matrix. This final matrix shows a clear-cut pattern: 
all similarities between the first hundred and the second hundred of points are negative 
whereas all the Lapin similarities within these sets are positive. Such a structure clearly 
separates the two clusters with any reasonable algorithm, the summary criterion based Ad-
dRem and the spectral approach included. 

Take a look, for example, at a randomly selected 5x2 fragment from  matrix X concern-
ing 2 rows from a1 and 3 rows from b in the left-hand part of Table 7.17. It is not easy to 
cluster points 3, 4, 5 together because of the great distances between them.  

Table 7.17. Five points from Figure 7.6, on the left, the affinity similarities between 
them, in the middle, and Lapin similarities, on the right. 

 
 x-axis       y-axis 2         3         4         5 2         3          4         5 

0.04  -0.12   -0.14    -0.10 0.63   0.00   0.02     0.01 -1.1465    0.3274 1 
         -0.12   -0.15    -0.11           0.00   0.00     0.00  0.8956    0.5529 2 
                      0.16     0.40                     0.00     0.03  0.3086    7.9059 3 
                                  0.46                            0.01 -7.1827    0.0625 4 

                    -5.0025    5.8504 5 
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This is reflected in the Gaussian affinity matrix A between 200 rows of the data matrix too, 
which is defined as described in section 7.1 according to formula 

 where exp( ( , ) / )ij i ja d x x= − s 2( , ) ( )v v
v V

d x y x y
∈

= −∑  is the squared Euclidean 

distance between vectors x and y. The value of s relates to the denominator of exponent 2σ2 
in the definition of the Gaussian density so that if one takes σ to be half of the range, then s 
should be about the same, which leads to s=9 in this case. The part of affinity matrix A re-
lated to the set of five points is presented in the middle of Table 7.17. One can see indeed a 
high affinity value between the first two entities, which belong to the heap in the middle of 
Figure 7.7 and are close to each other indeed, while the other similarities are close to zero – 
no visible structure. A similar pattern can be seen on the Laplacian except that all non-
diagonal entries are negative there because of the definition. After the Lapin transforma-
tion, however, the similarity structure, once again, becomes clear-cut, as shown on the right 
part of Table 7.17 for the 5-point subset, and in fact is true for the entire dataset. 

This ability of Lapin transformation in transforming elongated structures into 
convex clusters has been a subject of mathematical scrutiny. An analogy with 
electricity circuits has been found. Roughly speaking, if wij measures the conduc-
tivity of the wire between nodes i and j in a “linear electricity network”, then the 
corresponding element of a Lapin matrix expresses the “effective resistance” be-
tween i and j in the circuit (Klein and Randic 1993). Yet there can be cases of 
elongated structures, as shown in Worked example 7.8, at which Lapin transfor-
mation does not work at all.  

F7.2.2 Partition criteria and spectral clustering: Formulation 

Given a symmetric similarity matrix A=(aij) on set I, consider the issue of di-
viding I in two parts, S1 and S2, in such a way that the similarity between S1 and S2 
is minimum while it is maximum within the parts. Denote by a(Sf, Sg) the sum-
mary similarity “between”  S

f g

ij
i S j S

a
∈ ∈
∑ ∑f and Sg so that a(Sf, Sg) = .  

The normalized cut utilizes the summary similarities ai+=a(i,I). Denote  

 
                                                            ( )

k

k i
i S

a S a +
∈

= ∑  

)=a(SObviously, a(S1 1, S )+a(S1 1, S2); a similar equation holds for a(S2). The nor-
malized cut is defined as 

1 2 2 1

1 2

( , ) ( , )( )
( ) ( )

a S S a S Snc S
a S a S

= +      (7.9)                                

to be minimized. 
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It should be noted that minimized cut (7.9), in fact, includes the requirement of 
maximization of the within-cluster similarities. Indeed consider the normalized 
within-cluster similarity  

1 1 2 2

1 2

( , ) ( , )( )
( ) ( )

a S S a S Snt S
a S a S

= +                               ,         (7.10) 

scoring the tightness of clusters. These two measures are highly related: 
nc(S)+nt(S)=2 (see Q.7.2). This latter equation warrants that minimizing the nor-
malized cut simultaneously maximizes the normalized tightness. 

It appears, the criterion of minimizing nc(S) can be expressed in terms of a cor-
responding Rayleigh quotient – for the so-called Laplacian. Given a (pre-
processed) similarity matrix W=(w ), let us denote its row sums, as usual, by wij i+ 
= (i∈I) and introduce diagonal matrix D in which all entries are zero except 

for diagonal elements (i,i) that hold w

ij
j I

w
∈
∑

i+ for each i∈I. The so-called (normalized) 

Laplacian is defined as L=
1

2
1

2E D WD− −−
1

2D− where E is identity matrix and   
is a diagonal matrix with (i,i)-th entry equal to 1/ iw + . That means that L’s (i,j)-

th entry is 
ij ij i jw w wδ + +−  where δij is 1 if i=j and 0, otherwise. It is not difficult 

to prove that Lf0=0 where f0=(
iw +

)=D1/21  where 1N N is N-dimensional vector 

whose all entries are unity. That means that 0 is an eigenvalue of L with f0 being 
the corresponding eigenvector. 

Moreover, it is possible to prove that for any N-dimensional f, the following 
equation holds: 

2

,

1 (
2

jT i
ij

i j I i j

fff Lf w
w w∈ + +

= −∑ )                 (7.11) 

This equation proves that matrix L is semipositive definite, which means that all 
its eigenvalues are non-negative and 0 is the minimum eigenvalue. 

Given a partition S={S1, S2} of I, let us define vector s by condition 

2( ) ( )i i 1s w w S w S+=  for i∈S1 and 1( ) ( )i i 2s w w S w S+= −  for i∈S2. Obvi-

ously, the squared norm of this vector is constant, ||s||2 = 
=w(S2

i
i I

s
∈
∑ )+w(S )=w2 1 ++. Moreover, s is orthogonal to the trivial eigenvector 

f0=D1/21  of L. Indeed, the product of i-th components of these vectors has wN i+ as 
its factor multiplied by a value which is constant within clusters. Then summation 
of these components over S will produce 1 2 1 1( ) ( ) ( ) ( ) ( )w S w S w S w S w S=1 2  

and over S 2 1 2 1( ) ( ) ( ) ( ) ( )w S w S w S w S w S− = −2, 2 . These two sum up to 0, 

which proves the statement.  
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It remains to prove that minimization of (7.9) is equivalent to minimization of 
sT TLs/s s for thus defined s. Indeed, at f=s, the squared item in (7.11) is equal to 0 
for i,j from the same set S1 or S2. When i and j belong to different classes of S, the 
squared item is equal to w(S )/w(S )+ w(S )/a(S )+2 = [w1 2 2 1 ++-w(S2)]/w(S )+ [w2 ++ - 
w(S T)]/w(S1 1)+2= w++/w(S )+ w2 ++/w(S ). That means that s Ls= w1 ++nc(S), that is, 
nc(S)=sT TLs/s s  indeed.  

We have proven that the normalized cut minimizes the Rayleigh quotient for 
Laplacian matrix L over specially defined vectors s that are orthogonal to the ei-
genvector f0 =(wi+

1/2) corresponding to the minimum eigenvalue 0 of L. 

Therefore, one may consider the problem of finding the minimum non-zero ei-
genvalue for L along with the corresponding eigenvector as a proper relaxation of 
the normalized cut problem. That means that the spectral clustering approach in 
this case would be to grab that eigenvector and approximate it with an s-like bi-
nary vector. The simplest way to do that would be by putting all plus components 
to S and all negative to S1 2.   

To define the Lapin transformation of a symmetric matrix W, it remains to de-
fine the pseudo-inverse Laplacian. Consider all non-zero eigenvalues λ1, λ2, …, λr 
of matrix L and corresponding eigenvectors f1, f2, …, fr. The following spectral de-
composition equation holds: 

1 1 1 2 2 2 ...T T
r r r

TL f f f f f fλ λ λ= + + +   (7.12) 

The pseudo-inverse is defined by leaving the same eigenvectors but reversing 
the eigenvalues, which causes no problems since they are all non-zero: 

1 1 2 2
1 2

1 1 1...T T
r r

r

L f f f f f
λ λ λ

+ = + + + Tf    (7.13) 

  

Q.7.2. Prove that nc(S)+nt(S)=2 where the constituents are defined by equations 
(7.9) and (7.10). 

Q.7.3. Prove that a one cluster extension of the normalized cut criterion, maxi-
mize ng(S)=a(S,S)/a(S), does not work at nonnegative similarity data: the 
maximum is always reached at the universal cluster S=I. A. Indeed, ng(I)=1 
whereas ng(S)<1 at all other S unless there are all zeros outside of A(S,S). 

 
Q.7.4. What’s wrong with the idea of expressing the summary similarity criterion 

as a Rayleigh quotient?  
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C7.2.2 Pseudo-inverse Laplacian: Computation 

Given a non-negative matrix W with none of its rows summing up to 0, its 
Laplacian can be found with these MatLab commands:  

>> W=(W+W′)/2; % to warrant the symmetry 
>> wr=sum(W); 
>> D=diag(wr); 
>> D=sqrt(D); 
>> Di=inv(D); 
>> L=eye(size(W)) – Di*W*Di; 
 
Then the pseudo-inverse transformation can work like this. 

>> L=(L+L′)/2; 
>>[Z,M]=eig(L); 
>>ee=diag(M); 
>>ind=find(ee~=0); % indices of non-zero eigenvalues; 
>>Zn=Z(ind,ind); 
>>Mn=M(ind.in); 
>>Mi=inv(Mn); 
>>Lapin=Zn*Mi*Zn’; 

7.3 Additive clusters 

P.7.3 Decomposing a similarity matrix over clusters: 
Presentation 

The idea behind additive clustering is this. Since the raw data are similarities 
measuring relations between entities, let us decode a cluster in the same relational 
format. That is, let us make a cluster S to assign every two entities, i and j, a simi-
larity value: say unity if they belong to the cluster or 0 if at least one of them does 
not. This cluster similarity matrix plays the role of a dummy variable – in the for-
mat of a similarity matrix. For example, consider set I={1,2,3,4,5,6} and subset 
S={1,3,4}, then corresponding matrices s, 2s, and 2s-1 are as presented in Table 
7.18. 

Therefore, it is reasonable to think that a similarity matrix may reflect a number of 
attribute-based similarity matrices possibly taken with different weights. Consider, 
for example, the matrix of similarities between first five amino acids in Table 0.8 
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(B is omitted from the list because it is synonymous to D, see Table 0.9) as pre-
sented in Table 7.19; that on the right is obtained by subtracting the minimum, -4, 
from all entries to make it non-negative. 

Table 7.18. Matrices for cluster S={1,3,4} in a 6-element set. 

     Matrix s    Matrix 2s   Matrix 2s –1   
 1  2  3  4  5  6 1  2  3  4  5  6  1  2  3   4  5  6 
 1 1  0  1  1  0  0 2  0  2  2  0  0  1 -1  1   1 -1 -1 
 2 0  1  0  0  0  0 0  2  0  0  0  0 -1  1 -1 -1 -1 -1 
 3 1  0  1  1  0  0 2  0  2  2  0  0  1 -1  1   1 -1 -1 
 4 1  0  1  1  0  0 2  0  2  2  0  0  1 -1  1   1 -1 -1 
 5 0  0  0  0  1  0 0  0  0  0  2  0 -1 -1 -1 -1  1 -1 
 6 0  0  0  0  0  1 0  0  0  0  0  2 -1 -1 -1 -1 -1  1  

 
Table 7.19. Part of matrix Table 0.8 related to amino acids A, C, D, E, F: Original 
on the left, rearranged into the upper triangle in the middle, and added 4 to all en-
tries on the right.  

 
 A   C    D   E    F C    D   E    F  C    D   E    F  

  4    2    3    2 0   -2   -1   -2  4    0   -2   -1   -2 A 
    1    0    2 -3   -4   -2  0    9   -3   -4   -2 C 

         6    1         2   -3 -2   -3    6    2   -3 D  
               1              -3 -1   -4    2    5   -3 E 

   -2   -2   -3  -3    6 F 
 

Table 7.20 presents similarity matrices between these amino-acids according to 
attributes from Table 7.22. The attributes reflect popular molecular properties of 
amino acids related to their size (Small or not), electricity charge (Polar or not) 
and the propensity to keep inside of the molecules (Hydrophobic or not). That on 
the right represents a weighted sum of the three with an added intercept to mimic 
the matrix of similarities from BLOSUM62 (Table 7.19).    

Table 7.20. Similarity matrices between five amino acids according to attrib-
utes Small, Polar and Hydrophobic from Table 7.22.  

 Sm  Po  Hy Sm:  Po:  Hy:  2Sm+6Po+2Hy+1 
C  D E  F C  D  E   F    C  D  E  F 

A +              1  1   0  0  0   0   0   0   0   0   0  0      3  3  1  1 
C +             + 

+    + 
         1   0  0       0   0   0        0   0  1          3  1  2 

D               0  0             1   0             0  0              6  1 
E +                   0                 0                 0                  1 
F          + 

 
The two similarity matrices are compared in Table 7.21. Overall, the result does 

not look too bad: there are only two significant differences, in similarities between 
amino acids A and E, and C and D, that probably require taking into account more 
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attributes. If we go for regression of the observed similarity over attribute-based 
similarity we could get slightly better results. This idea is pursued in Project 7.1 
on the whole set of amino acids. 

Table 7.21. Comparison of the two similarity matrices between five amino ac-
ids, one taken from observations in Table 7.19 and the other additively composed 
using attribute clusters in Table 7.20.  

 BLOSUM62 
        C   D  E  F 

2Sm+6Po+2Hy+1 
        C   D  E  F  

  Difference 
  C   D   E  F 

A 
C 
D 
E 

        4   2   3   2 
             1   0   2 
                  6   1 
                       1 

         3  3  1  1 
             3  1  2 
                 6  1 
                     1 

  1   -1   2  0 
       -2  -1  0 
              0  0 
                  0 

 
There are situations, though, in which the user prefers to find clusters underly-

ing the observed similarities, according to the additive model, by the matrix itself, 
without much bothering of trying to obtain related attributes. This is the realm of 
additive clustering model analyzed further in section F7.3. This model can be con-
sidered as an extension of the spectral decomposition of similarity matrices to the 
case when the vectors to be found are constrained to be 1/0 binary. Assuming the 
conventional least-squares criterion for this specification of the summarization 
problem, a natural idea coming to mind is to mimic the one-by-one approach of 
the Principal component analysis. The other idea, just working on all clusters in 
parallel, is not considered in this text. 

Yet even at the restricted, one cluster, model, there can be a number of different 
approaches to minimizing the least-squares criterion or, equivalently, maximizing 
the Rayleigh quotient. Those two, tried at the maximum tightness criteria in sec-
tions 7.1 and 7.2, should be considered first:  

(i) Spectrum of similarity matrix  
Let us drop the constraint of vectors being binary and find the optimal solution 

among arbitrary vectors, that is, the maximum eigenvalue and corresponding ei-
genvector, and then adjust somehow its components to the zero-one setting. It 
seems reasonable that the larger components of the eigenvector are to be changed 
for unity while those smaller ones are changed for zero.  If true, this would drasti-
cally reduce computation. 

(ii) Hill-climb clustering  
The strategy of finding a cluster by adding/removing entities in a best possible 

way implemented, for the summary similarity criterion, in section 7.1 can be ap-
plied here too. At least, it leads to provably tight clusters. This is the strategy pur-
sued further in this text with versions of AddRem algorithm explained in section 
C7.3. 
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The one-cluster model assumes, rather boldly, that all observed similarities can 
be explained by a summary action of just two constant-level causes and noise:  

(i) general associations between all entities at a constant level; 

     (ii) specific associations between members of a hidden cluster, also on a 
constant level, though not necessarily the same as the general one. 

This is a much simplified model, but it brings in a nice clustering criterion to 
implement the least-squares approach: the underlying cluster S must maximize the 
product of the average within-cluster similarity a(S) and the number of elements in 
S, |S|: g(S)=|S|a(S). The greater the within-cluster similarity, the better, and the 
larger the cluster, the better too. These two criteria do not necessarily go along. In 
fact, they are at odds in most cases: the greater the number of elements in in a 
cluster, the smaller within-cluster similarities are. That is, criterion g(S) is a com-
promise between the two. When S is small, an increase in its size would dominate 
the unavoidable fall in similarities. But later in the addition process, when S be-
comes larger, the relative size change diminishes and cannot dominate the fall in 
within-cluster similarities – the process of generating S stops. This can been put, 
in terms of the attraction function, as follows: the cluster S found using algorithm 
AddRemA has all its elements positively attractive, whereas each entity outside S 
is negatively attracted to S. The attraction of entity i to S is defined as its average 
similarity to S minus half the within cluster average, a(S)/2.                

The pre-specified level of between-entity associations (i) is captured by using 
the concept of similarity shift illustrated on Figure 7.2 above. 

Worked example 7.9. Additive clusters at Confusion dataset 
 
Consider the symmetrised Confusion data set in Table 7.2 using algorithm AddRemA at 

different levels of similarity shift starting at different entities. 
The table presents each approximate cluster with all three characteristics implied by the 

additive clustering model: 

(1) The cluster list S of its entities; 
(2) The cluster-specific intensity λ=a(S), the average within cluster similarity; 
(3) The cluster contribution to the data scatter, g2(S)=λ2|S|2.  

 
One can see that indeed the clusters become smaller when the similarity threshold 

grows, as illustrated on Figure 7.2. The corresponding changes in the intensity values re-
flect the fact that ever increasing shift values have been subtracted from the similarities.  
The table also shows that there is no point in making the similarity shift values greater than 
the average similarity value. In fact, setting the similarity shift value equal to the average 
can be seen as a step of the one-by-one cluster extracting strategy: subtracting the average 
from all the similarities is equivalent to extracting the universal cluster with its optimal in-
tensity value – provided the cluster is considered on its own, without the presence of other 
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Table 7.22. Non-singleton clusters at symmetrised, no diagonal, Confusion matrix found 
at different similarity shift values; the average out-of-diagonal similarity value is 
Av=33.46. 

Similarity shift Cluster lists Intensity Contribution 
0 (i)  2  3  5     8     10  

(ii)   1  4  7 
45.67 
91.83 

37.14 
21.46 

Av/2=16.72 (i)    1  4  7 
(ii)   3  5  9 
(iii)  6  8  0 

75.11      
71.94     
71.44 

21.11   
19.37    
19.10 

Av=33.46 (i)    1  7 
(ii)   3  5  9 
(iii)  6  8  0 

131.04       
  55.21    
  54.71 

25.42 
13.54 
13.29 

3Av/2=50.18 (i)    1  7 
(ii)   3  9 
(iii)  6  8  0 

     114.32   
       81.32 
       37.98 

16.31     
8.25     
5.40

2Av=66.91 (i)     1  7 
(ii)    3  9 
(iii)   8  0 
(iv)   6  8 

       97.59      
       64.59    
       54.59    
       45.59 

8.08 
3.54 
2.53 
1.76 

 
clusters. At the similarity shift equal to the average, cluster {1,4,7} loses digit 4 because of 
its weak connections. Overall, the results best matching those of Figure 6.5 in case study 
6.3 are found at the similarity shift equal to Av/2. 

Project 7.1. Analysis of structure of amino acid substitution rates 

Let us consider the data of substitution between amino acids in Table 0.8 and try 
explaining them in terms of properties of amino acids. An amino acid molecule 
can be considered as consisting of three groups of atoms: (i) an amine group, (ii) a 
carboxylic acid group, and (iii) a side chain. The side chain varies between differ-
ent amino acids, thus affecting their biochemical properties. Among important fea-
tures of side chains are the size and polarity, the latter affecting the interaction of 
proteins with solutions in which the life processes act: the polar amino acids tend 
to be on protein surfaces, i.e., hydrophilic, whereas other amino acids hide within 
membranes (hydrophobicity).   There are also so-called aromatic amino acids, 
containing a stable ring, and aliphatic amino acids whose side chains contain only 
hydrogen or carbon atoms.  These are presented in Table 7.23. As can be easily 
seen, these five attributes cover all amino acids but only once or twice. 

A natural idea would be to check what relation these features have to the substi-
tutions between amino acids.  To explore the idea one needs to represent the fea-
tures in the format of the matrix of substitutions, that is, in the similarity matrix 
format. Such a format is readily available as the adjacency matrix format. That is, 
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a feature, say, “Small” corresponds to a subset S of entities, amino acids, that fall 
in it. The subset generates a binary relation “i and j belong to S” expressed by the 

Table 7.23. Attributes of twenty amino acids. 

Amino acid       Small   Polar    Hydrophobic    Aliphatic    Aromatic 
A Ala 
C Cys 
D Asp 
E Glu 
F Phe 
G Gly 
H His 
I Ile 
K Lys 
L Leu 
M Met 
N Asn 
P Pro 
Q Gln 
R Arg 
S Ser 
T Thr 
V Val 
W Trp 
Y Tyr 

   +                                                  + 
   +                            + 
   +          + 
               + 
                                 +                                        + 
   +                                                  + 
                                                                           + 
                                 +                    + 
               + 
                                 +                    + 
                                 + 
   +          + 
   + 
               + 
               + 
   + 
   + 
                                  +                   + 
                                  +                                        + 
                                                                            + 

 

Cartesian product S×S or, equivalently, by the N×N binary entity-to-entity simi-
larity matrix s=(sij) such that sij=1 if both i and j belong to S, and sij=0, otherwise. 
For example, on the set of first five entities I={A,C,D,E,F} in Table 7.23, the bi-
nary similarity matrices for attributes Small, Polar and Hydrophobic are presented 
in Table 7.20. 

To analyze contributions of the attributes to the substitution rate data A one can 
use a linear regression model (see section 3.3) 

 
                            A=λ1Sm+λ2Po+λ3Hy+λ4Al+λ5Ar+λ0    
   
which in this context suggests that the similarity matrix A (after the intercept λ0 is 
subtracted from it) can be decomposed, up to a minimized residual matrix, accord-
ing to features in such a way that each coefficient λ1, …, λ5, expresses the inten-
sity level supplied by it to the overall similarity. The intercept λ0, as usual, sums 
up shifts in the individual attribute similarity scales. 

To fit the regression model, let us utilize upper parts of the matrices only. In 
this way, we  
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(i) take into account the similarity symmetry and  
(ii) make the diagonal substitution rates, that is, similarity to itself, not 

affecting the results.  
 
Table 7.24. Least-squares regression results. The last line entries (standardized 

intensities) are products of the corresponding entries in the first and second lines. 

    Sm      Po      Hy      Al       Ar      Intercept 
Intensity λ 
Standard deviation
Standardized 
Intensities 

   2.46    1.48    1.02    0.81    2.65      -2.06 
   0.27    0.31    0.36    0.22    0.18 
 
   0.66    0.47    0.36    0.18    0.46 

   
As one can see from Table 7.24, the estimates of the slope regression coeffi-

cients are all positive, giving them the meaning of the weights or similarity inten-
sities indeed, of which dummies representing categories Small, Polar, and Aro-
matic are the most contributing, according to the last line in Table 7.24. The 
intercept, though, is negative. 

Unfortunately, the five attributes are not enough to explain the pattern of amino 
acid substitution: the determination coefficient is just 37.3%, less than a half. That 
means one needs to find different attributes for explaining the amino acid substitu-
tion patterns. 

Then the idea of additive clustering comes. Why cannot we find attributes to fit 
in the similarity matrix from the matrix itself rather than by trying to search the 
amino acid feature databases? That is, let us consider unknown subsets S1, S2, .., 
SK of the entity set along with the corresponding  binary membership vectors s1, s2, 
.., sK such that si k=1 if i∈Sk, and sik=0, otherwise, k=1,2, …, K, and find them ac-
cording to model  

aij = λ1si1sj1 + λ2si2sj2 + … + λKsiKsjK + λ0 + eij    (7.14) 

According to this model, each of the similarities aij is equal to a weighted sum of 
the corresponding cluster similarities siksjk, up to small residuals,  eij (i,j∈I). 

 
Unfortunately, there are too many items to find, given the similarity matrix 

A=(aij): the number of clusters K, the clusters S1, S2, .., SK themselves as well as 
their intensity weights, λ1, λ2, …, λK, and the intercept, λ0. This makes the solution 
much dependent on the starting point, as it is with the general mixture of distribu-
tions model.  

If, however, we rewrite the model by moving the intercept to the left as 
aij − λ0= λ1si1sj1 + λ2si2sj2 + … + λKsiKsjK  + eij,                          (7.15) 

the model reminds the equation for the Principal Component Analysis very much, 
especially as expressed in terms of the square matrices, see F4.2.3 – the aij − λ0 
plays the role of the covariance values, sik, the role of the loading/values, that is, k-
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th eigenvector, and λk, the role of the k-th eigenvalue, the only difference being 
that the binarity constraints are imposed on the values sik that must be either 1 or 0. 

In (7.14), the intercept value λ0 is the intensity of the universal cluster S0=I 
which is assumed to be part of the solution. In (7.15), however, this is just a simi-
larity shift, with the shifted similarity matrix As=(aij

s)  defined by aij
s = aij − λ0 

which is akin to the uniform data transformation in section 7.1. Most important is 
that the value of λ0  in model (7.15) ought to come from external considerations 
rather than from inside of the model as it is in (7.14). 

The machinery for identifying additive clusters one-by-one developed further 
on leads to the following clusters found at different scale shift value λ0 (see Table 
7.21). 

Table 7.21. Non-singleton clusters at Amino acid substitution data found at dif-
ferent similarity shift values; the average out-of-diagonal similarity value is Av=  
−1.43. 

Similarity shift Cluster lists Intensity Contribution 
0 (i)   ILMV 

(ii)  FWY 
(iii) EKQR 
(iv) DEQ 
(v) AST 

1.67     
2.00 
1.17     
1.33     
0.67 

2.04 
1.47     
1.00     
0.65     
0.16 

Av/2= −0.71 (i) ILMV 
(ii) DEKNQRS 
(iii) FWY 
(iv) AST 

2.38     
1.05     
2.71 
1.38 

6.47 
4.38 
4.21 
1.09 

Av= −1.43  (i)   DEHKNQRS 
(ii)  FILMVY 
(iii) FWY 

1.60  
1.96     
3.43 

16.83 
13.44 
  8.22 

 
At the similarity shift equal to the average, there are three clusters covering 

38.5% of the variance of the data. These concern three features of those consid-
ered above: Polar (cluster i), Hydrophobic (cluster ii), and Aromatic (cluster iii). 
The clusters slightly differ from those presented in Table 7.19, which can be well 
justified by the physic and chemical properties of amino acids. In particular, clus-
ter (i) adds to Polar group two more amino acids: H (Histidine) and S (Serine). 
These two, in fact, are frequently considered polar too. Cluster (ii) differs from the 
Hydrophobic group by the absence of C (Cysteine) and W (Tryptophan) and the 
presence of Y (Tyrosine). This corresponds to a specific aspect of hydrophobicity, 
the so-called octanol scale, that does exclude C and include Y (for some most re-
cent measurements, see, for example, http://blanco.biomol.uci.edu). The absence 
of Tryptophan from the cluster is probably due to the fact that it is not easily sub-
stituted by the others because it is by far the most hydrophobic of the pack. Cluster 
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(iii) consists of hydrophobic aromatic amino acids which excludes F (Phenyla-
lanine)  because it is not hydrophobic.   

F7.3 Additive clusters one-by-one: Formulation 

Let I be a set of entities under consideration and A=(aij) a  symmetric similarity 
matrix i,j∈I. The  additive clustering model assumes  that the similarities in A are 
generated by a set of additive clusters Sk ⊆ I together with their intensities λk (k=0, 
1, ..., K) in such a way that each aij is approximated by the sum of the intensities of 
those clusters that contain both i and j: 

aij = λ1si1sj1 + λ2si2sj2 + … + λKsiKsjK + λ0 + eij    (7.14) 

where sk=(sik) are the membership vectors of unknown clusters Sk, and λk are their 
positive intensity values, k=1, 2, ..., K. Residuals eij are to be minimized.  
The zero’s cluster S0 is assumed to coincide with the entire set I so that its inten-
sity λ0 is the intercept in (7.14).  On the other hand, λ0 has a meaning of the simi-
larity shift, with the shifted similarity matrix A’=(a’ij)  defined by a’ij=aij-λ0. 
Equation (7.14) for the shifted model can be rewritten as  

a’ij = λ1si1sj1 + λ2si2sj2 + … + λKsiKsjK  + eij,    (7.15) 

so the shifted similarity matrix a’ij=aij-λ0 is the sum of cluster binary matrices 
weighted by their intensities. The role of the intercept λ0 in (7.15) as a “soft” simi-
larity threshold is of a special interest when λ0 is user specified,  because the 
shifted similarity matrix  a’ij may lead to different clusters at different λ0 values, 
as Figure 7.2 and Table 7.21 clearly demonstrate. 
 
Model (7.15) can be considered under two different assumptions of the underlying 
cluster structure: 

A. Overlapping additive clusters 
B. Non-overlapping clusters 

 
In the latter case, the summation in model (7.14) - (7.15) hides the fact that no 
summation of intensities goes on. Every similarity a’ij is assumed to be approxi-
mately equal to the intensity value of that cluster that contains both i and j, or 0 if 
no cluster contains both of the entities.  

The equations in (7.15) coincide with those in (7.12) up to the condition that 
vectors s’s in (7.15) are bound to be 1/0 binary, whereas no constraint is imposed 
on f’s in (7.12). That means that the additive clustering model is an extension of 
the spectral decomposition onto the case when vectors are binary. This type of de-
composition, with additional constraints such as say non-negativity of the ele-
ments of the solution is becoming increasingly popular in data analysis. Assuming 
the conventional least-squares criterion for this specification of the summarization 
problem, a natural idea coming to mind is to imitate the one-by-one approach of 
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the Principal component analysis. The other idea, just working on all clusters in 
parallel, is not considered in this text. 

Therefore, we turn to a simplest version of (7.14)-(7.15) model which is a single 
cluster model: 
 

                       wij = λsis  + ej ij,     (7.16) 

where  wij are not necessarily the original similarities but rather any similarities in-
cluding the shifted a’ij, and s=(si) is an N-dimensional zero-one vector of the 
memberships to cluster S to be found and λ its intensity. 
To fit the model (7.16), we minimize the square error criterion 

                                  (7.17) 2 2

,
( , ) ( )ij i j

i j I
L s w s sλ

∈

= −∑ λ

We first note that, with no loss of generality, the similarity matrix W can always 
be considered symmetric, because otherwise W can be equivalently changed for a 
symmetric matrix Ŵ= (W+WT)/2.  

 
Indeed, the part of criterion (7.17) related to a particular pair i,j∈I is (wij − λsisj )2 
+ (wji − λsjsi )2 which is equal to wij 

2 +wji
2 - 2λ(wij+wji)sis + 2λ2sj isj. The sisj on 

right are not squared because they are 0 or 1, thus do not change under this opera-
tion.  The same part at matrix Ŵ=(ŵij) reads as (wij 

2 +wji
2 +2wijw )/2− 2λ(wji ij+ wji) 

sis + 2λ2sj isj so that the only parts affected are constant while those depending on 
the cluster to be found are identical, which proves the statement. Thus, the as-
sumption that the similarity matrix is symmetric does not change a thing: it can 
always be transformed to a symmetric form Ŵ= (W+WT)/2.   

 
For the sake of simplicity we assume that the matrix W comes with no diagonal 
entries, or that the diagonal entries wii are all zero. 

 
Let us take a look at criterion (7.17) under each of two assumptions (Mirkin et al. 
2010): 

 
(a) Cluster intensity λ is pre-specified by the user 
(b) Cluster intensity λ is to be found according to the criterion. 

 
We first analyze the case of λ pre-specified. Let us slightly rewrite criterion 
(7.17): 

 
2 2 2

, , ,
( , ) ( ) 2 ( )

2ij i j ij ij i j
i j I i j I i j I

L s w s s w w s sλλ λ λ
∈ ∈ ∈

= − = − −∑ ∑ ∑   (7.17′) 

 
Assume that λ is positive. Then minimizing (7.17) is equivalent to maximizing the 
sum on the right, which is just the summary uniform criterion (7.2) at π=λ/2 that 
has been described and utilized in section 7.1. Indeed, the equation 



 389 

, ,
( / 2) ( /ij i j iji j I i j S
w s s wλ

∈ ∈
− = −∑ ∑ 2)λ

e 

easily follows from the fact that si=1 

if and only if i∈S. That means that the algorithm AddRem from C7.1 is applicabl
here to produce λ/2-tight clusters. 
The case (b), when intensity λ in (7.17) is to be adjusted to further minimize the 
criterion, it is easy to prove that, given an S, the optimal λ is just the average of 
within cluster similarities, λ=λ(S), where 

,

, ,
( ) /

| | (| | 1)

ij
i j S
i j

ij i j i j
i j I i j I
i j i j

w

S w s s s s
S S

λ
∈

≠

∈ ∈
≠ ≠

= =
−

∑
∑ ∑                               (7.18) 

 
as it is always the case for the least-squares approximation of a series of numbers 
by a central value (see section 1.2).  

 
That means that, again, the criterion is equivalent to the summary uniform crite-
rion (7.2), but this time with a variable value of the threshold π=λ(S)/2 that de-
pends on S. In particular, a locally optimal cluster is λ(S)/2-tight: the average simi-
larities of entities i∈I to S are greater than λ(S)/2 for those i in S and smaller than 
λ(S)/2 for i’s out of S.  

 
If one puts the optimal λ=λ(S) in (7.17), the least squares criterion is decomposed 
as follows  
 

2 2 2 2 2

, , ,
( ( ), ) ( ( ) ) ( ) ( ) | | (| | 1)ij i j ij i j

i j I i j I i j I
i j

L S s w S s s w S s s T S S Sλ λ λ λ
∈ ∈ ∈

≠

= − = − = − −∑ ∑ ∑  

where T is the data scatter, the sum of all the similarities squared, so that a Py-
thagorean decomposition of the data scatter holds: 
                                                   (7.19) 2 2

,
( ) | | (| | 1)ij

i j I
T w S S Sλ

∈

= = − +∑ 2L

2L+

where L2 is the unexplained minimized part (7.17) whereas the item in the middle 
is the explained part of the data scatter. 

  
The decomposition (7.19) looks more elegant when the diagonal similarities wii 
are admitted. In this case, the sum Σi,j∈I sisj   is equal to |S|2  and λ(S)=sT TWs/(s s)2 so 
that 

 
2 2 2

,
( ) | |ij

i j I
w S Sλ

∈

=∑                                              (7.19′) 

The explained part in (7.19′), which is to be maximized to minimize L2 because 
the scatter T is constant, is 

2
2 2( ) [ ( ) | |]

T

T

s Wsg S S S
s s

λ
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

                               (7.20)                           
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which is but the square of the Rayleigh quotient   

( ) ( ) | |
T

T

s Wsg S S                S
s s

λ= =                                             (7.21) 

Since it is assumed that at least some of the similarities in A are positive, the 
maximum of (7.11) over all binary s’s is positive as well. Indeed, take a positive 
wij and a vector s with all components equal to zero except for just i-th and j-th 
components that are unities. Obviously (7.21) is positive on that, the more so the 
maximum. If, however, all the similarities between entities are negative, then no 
non singleton cluster can make (7.21) positive – that is, no non trivial cluster can 
come up with the criterion. 

 
That means that a version of AddRem(i) algorithm with a variant threshold π, Ad-
dRemA(i) in section C7.3, in fact (locally) optimizes the Rayleigh quotient (7.21).    

 
Now we can return to the case of the original model with multiple clusters. The 
situation will slightly differ depending on whether clusters are assumed non-
overlapping or possibly overlapping.  

 
Consider, first, the case of model (7.15) with the restriction that clusters to be 
found must not overlap. The fact that clusters Sf and Sg do not overlap can be 
equivalently stated in terms of their binary membership vectors sf and  sg: these 
must be orthogonal so that <sf,sg>=0. This implies that the shifted data scatter 
admits the following decomposition: 

 
2

1
, [ ] ,

K
T T
k k k k

k
A A s As s s E

=

′ ′            E= + < >∑< >    (7.22) 

 
which extends equation (7.19) to the multiple cluster case. In (7.22), the inner 
products <A’,A’> and <E,E> denote the sums of the squared elements of the cor-
responding matrices. To derive (7.22), one can take the inner product of equation 
(7.15) by itself, considering all matrices as N×N vectors, and taking into account 
the fact that matrices sksk

T and slsl
T are orthogonal as N×N vectors at k≠l, because 

the corresponding vectors sk and sl are orthogonal. 
 
Equation (7.22) means that each of the optimal non-overlapping clusters indeed 
contributes the squared Rayleigh quotient (7.20) to the shifted data scatter, and, 
moreover, the optimal intensity value λk of cluster Sk is, in fact, the within cluster 
average  λk =λ(Sk). The sum in the middle represents the part of the data scatter 
<A’,A’> “explained” by the model, whereas <E,E> relates to the “unexplained” 
part. Both can be expressed in percentages of the data scatter. Obviously, the 
greater the explained part the better the fit. 
 
Assuming that the cluster contributions differ significantly, one can apply the one- 
by-one principal component analysis strategy to the cluster case as well – though, 
in this case, the process does not necessarily lead to an optimal solution. This 
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strategy can be put as follows. First, a cluster S is found at the entire data set to 
maximize the Rayleigh quotient (7.21). It is denoted by S1 along with its intensity 
value λ1 =λ(S1) and the contribution g2(S1) in (7.20) and removed from the entity 
set I. The next cluster S2 is found in the same way over the remaining entity set, 
and removed as well. The process iterates until no positive entries in A’ over the 
remaining entities can be found. This would mean the remaining entities are all to 
remain singletons. In general, the process yields suboptimal, not necessarily opti-
mal, clusters. 
 
Let us turn now to the case of overlapping clusters. 
 
To fit the model (7.15), the one-by-one cluster extracting strategy will require 
minimizing, at each step k=1, 2, ..., K  the criterion (7.17) applied to a correspond-
ing residual similarity matrix Ak (Mirkin 1987, 1996). Specifically, A1 is taken to 
coincide with the shifted similarity matrix, A1=A’. At k-th step, a (locally) optimal 
cluster maximizing (7.20) over W=Ak is found to be set as Sk along with its inten-
sity value λk, equal to the average of the residual similarities within Sk. Its contri-
bution to the data scatter is equal to the optimized criterion (7.20). The residual 
similarities are updated after each step k by subtracting the found λksiksjk: 
 

aij,k+1 = aij,k − λksiksjk.      (7.23) 

In spite of the fact that thus found clusters may and frequently do overlap, this 
one-by-one strategy leads to a decomposition of the data scatter into the contribu-
tions of the extracted clusters (Sk, λk) and the minimized residual square error, 
which is analogous to (7.22): 

2
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, [ ] ,

K
T T
k k k k k

k
A A s A s s s E

=

′ ′< >= + <∑                        E >               (7.24) 

except that it is residual similarity matrix Ak.stands in the middle rather than the 
original matrix A′.  

 
To prove (7.24), one needs just the equation (7.19′) applied to W=Ak, 

2
2 2

,
,

T
k k k

Tij k k
k ki j I

s A sa Ls s∈
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∑                      (7.25)                                 

2
, 1

,
k ij k

i j I
L a +

∈

= 2∑Since , (7.24) can be obtained by summing up the equations 

(7.25) over all k=1, 2, ...,K. 
 

Q.7.5. What happens if λ<0 in criterion (7.17)? A. According to formula (7.17′), 
that would mean that the summary uniform similarity 

,
( /iji j S
w λ

∈
− 2)∑ must be 

minimized rather than maximized. An optimal set S would consist of most dis-
similar entities. Such a set sometimes is referred to as an anti-cluster. 
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Q.7.6. Can you think of a real world problem that would amount to the goal of 
finding anti-clusters rather than clusters?  

 
Q.7.7. Consider the uniform summary criterion u(S, π) and two values of 
threshold, π1 < π2. Prove that the size of optimal cluster at π2 cannot be greater 
than that at π1, thus supporting the intuition illustrated on Figure 7.2. 

C7.3 Finding (sub)optimal additive clusters: Computation 

Before starting computation of additive clusters, the similarity matrix should be 
made symmetric, by averaging it with its transpose, and shifted by a scale shift 
value λ0 which is to be user defined. A default value for λ0 can be the average 
value of the similarity matrix if similarity values vary across the matrix or λ0=1/2 
if the similarity matrix is the flat zero-one matrix of an ordinary graph. 

We consider here only one cluster based additive clustering algorithms.  

Given a matrix W=(wij), consider an additive clustering analogue to Ad-
dRem(i) algorithm from C7.1. Again vector z=2s-1is used to hold the information 
of cluster S being built. Its components are: zi=1 if i∈S and zi=−1, otherwise. This 
allows for the same action of changing the sign of zi to express both addition of i 
into S if i∉S and removal of i out of S if i∈S.  

AddRemAdd(j) algorithm 
 
Input: matrix W=(wij); Output: cluster S containing j, its intensity λ and contribu-
tion g2 to the original A′ matrix scatter. 
 

1. Initialization. Set N-dimensional z to have all its entries equal to -1 except 
for zj =1, the number of elements n=1, intensity λ=0, and contribution 
g2=0. For each entity i∈I, compute its average similarity to S, w(i,S)= wij.  

2. Selection. Find i* maximizing w(i,S).  
3.   Test.  

a. If w(i*,S)>λ/2 
i. Change the sign of zi* in vector z, zi*⇐−zi* 

ii. Update: n⇐n+ zi* (the number of elements in S), 
λ⇐(n-2)[λ+ zi*2w(i*,S)/(n-2)]/n (the average similarity 
within S), w(i,S)⇐[(n-1)a(i,S)+ zi*wii*]/n (the average 
similarities of all entities to S), and g2=λ2n2 (the contri-
bution), and go to 2.  

b. Else  
i. Output S, λ and g2. 

          c. End 
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The general step is justified by the fact that indeed equations (7.5) imply that 
maximizing w(i,S) over all i∈I does maximize the increment of g(S) among all 
sets that can be obtained from S by either adding an entity to S or removing an en-
tity from S. Updating formulas can be derived from the definitions of the concepts 
involved. 
The algorithm AddRemAdd(j) utilizes no ad hoc parameters, except for the simi-
larity shift value, so the cluster sizes are determined by the process of clustering 
itself. Yet, changing the similarity shift λ0 may affect the clustering results indeed, 
which can be of an advantage when one needs to contrast within- and between- 
cluster similarities. 
To use AddRemAdd algorithm for the case of non-overlapping clusters, one needs 
to perform a set of repetitive steps in the algorithm ADN (ADditive clusters Non-
overlapping) as follows. 
 

ADN algorithm 
Input: matrix A′=(a′ij); Output: a set of non-overlapping clusters S1, S2, …, SK 
where  

(i) number of clusters K is not pre-specified and  
(ii) they do not necessarily cover all the entity set,  

together with their intensities λk and contributions gk
2 to the A′ matrix scatter. 

 
0. Initialization. Set k=1, Ik=I and Ak= A′. 
1. Stopping test. Check whether Ik contains more than one entity and 

whether Ak contains positive values. If either is not true, the computation 
stops and those clusters found so far are output. 

2. Cluster. Apply AddRemAdd(j) for every j∈Ik. Select that of the results 
maximizing the contribution and put is as Sk along with the correspond-
ing intensity λk and contribution gk

2. 
3. Update. Set Ik = Ik − Sk , k=k+1, and Ak the part of matrix A′ related to 

elements of Ik only.  
 

The number of clusters is not pre-specified by the user with ADN nor the subset of 
entities remaining unclustered. Yet both are predetermined by the choice of the 
scale shift parameter λ0 leading to matrix A′.  This choice, in fact, defines the 
granularity of clustering as illustrated on Figure 7.2. 

A similar algorithm, ADO (ADditive clusters Overlapping) can be drawn for 
the case when clusters are not necessarily non-overlapping. 

ADO algorithm 
Input: matrix A′=(a′ij) and parameters for halting the computation: (i) threshold of 
contribution of individual clusters ς, say ς=5%, (ii) threshold of explained contri-
bution η, say η=50% ; Output: a set of  possibly overlapping clusters S1, S2, …, SK 
where  
(i) number of clusters K is not pre-specified,  
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(ii) they do not necessarily cover all the entity set, and  
(iii) they may overlap,  
together with their intensities λk and contributions gk

2 to the A′ matrix scatter. 
0. Initialization. Compute the data scatter D=< A′, A′>. Set k=1 and Ak= A′. 
1. Cluster. Apply AddRemAdd(j) to Ak for every j∈I. Select of the results 

that maximizing the contribution and put is as Sk along with the corre-
sponding intensity λk and contribution gk

2. 
2. Stopping test. Check whether gk

2/D >ς  and Σf≤k gk
2/D≤ η. If either is not 

true, the computation stops and only clusters found at the previous itera-
tions are output. 

3. Update. Set Ak = Ak - λk sksk
T, k=k+1. 

4. Similarity positivity test. Check whether Ak contains positive values. If 
yes, go to 1. If not, the computation stops and all clusters found so far are 
output. 

 

Algorithm ADO extracts clusters from the similarity matrix one by one so that 
the residual elements are getting smaller at each step overall (Mirkin 1996). A 
drawback of ADO is that any cluster, once extracted, is never updated, so that a 
version of the algorithm should be developed with an inbuilt mechanism for up-
dating the extracted clusters. This can follow an additive clustering algorithm for 
rectangular data in Depril, Van Mechelen and Mirkin (2008).  

7.4 Summary 

This chapter is an attempt to make a unified teaching material from diverse ap-
proaches to finding clusters in networks. The unifying theme is the summary 
within-cluster similarity criterion that, first, embraces the uniform and modularity 
approaches to confront the data with background noise, and then runs in the spec-
tral clustering approach and the additive clustering approach. These two latter ap-
proaches represent two different pathways in attempts to extend the theory of 
spectral matrix decomposition to clustering tasks. The spectral clustering does it 
by finding such combinatorial clustering criteria and such data transformations at 
which the spectral problem becomes an unconstrained relaxation of the combina-
torial task. The additive clustering does just the opposite: it formulates a clustering 
problem as an extension of the spectral decomposition and tries to solve it using 
combinatorial methods. What is nice, that both of the approaches are effective; 
they do find good clusters, although there are specifics such as, for example, that 
the uniform criterion is better fitting to flat ordinary graph structures while the 
modularity criterion is better fitting at the data reflecting the diversity of individ-
ual entities. It is clear however that this part of data analysis technology is quickly 
moving forward to further developments.  
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Appendix 

Boris Mirkin 

Department of Computer Science and Information Systems, Birkbeck, University of London, 
Malet Street, London WC1E 7HX UK 

Department of Data Analysis and Machine Intelligence, Higher School of Economics, 11 
Pokrovski Boulevard, Moscow RF  

Abstract    

This material consists of five sections. Three sections are to help in getting ac-
quainted with::  

A1. Basic linear algebra  
A2. Basic optimization 
A3. Basic MatLab 

Section A4 lists MatLab codes for some of the methods. These are: 
  cm.m – Evolutionary method for finding Minkowski’s center of a series 
 
 plan.m – A set of modules for fitting power law regression by using both 

evolutionary method and linearization; includes a module for saving re-
sults in an ascii file (can be used as a template for saving results) 

 
 nnn.m – Learning a neuron network with one hidden layer 
 
 clatree.m – Building binary classification trees using Gini or Pearson chi-

squared or Information gain criterion. 
 

Last section, A5, supplies two randomly generated samples: three samples differ-
ent distributions 50 strong each, short.dat, and a 280 strong sample from N(0,10). 
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A1 Basic linear algebra 

Table A1.1 presents data matrix from Table 4.9. It has 8 rows and 7 columns, 
that is, it is 8×7 matrix. 

 
Table A1.1. Company data standardized. 
 

 v1 v2 v3 v4 v5 v6 v7 

e1 
e2 
e3 
e4 
e5 
e6 
e7 
e8 

-0.20 
 0.40 
 0.08 
-0.23 
 0.19 
-0.60 
 0.08 
 0.27 

  0.23 
  0.05 
  0.09 
 -0.15 
 -0.29 
 -0.42 
 -0.10 
  0.58 

-0.33
 0 
 0 
-0.33
 0 
-0.33
 0.33
 0.67

-0.63
-0.63
-0.63
 0.38
 0.38
 0.38
 0.38
 0.38

 0.36
 0.36
-0.22
 0.36
-0.22
-0.22
-0.22
-0.22

-0.22 
-0.22 
 0.36 
-0.22 
 0.36 
 0.36 
-0.22 
-0.22 

-0.14  
-0.14 
-0.14 
-0.14  
-0.14 
-0.14  
 0.43 
 0.43 

 
A1.1 Inner product and distance. 
 
Every row in data matrix Table A1.1 represents an entity as a 7-dimensional 

vector, or point, such as e1=(-0.20, 0.23, -0.33,  -0.63,  0.36,  -0.22,  -0.14)  which 
is simultaneously a 1 x 7 matrix. Similarly, every column represents a feature or 
category as an 8-dimensional vector, or a 8 x 1 matrix, such as 

    v1 
-0.20 
 0.40 
 0.08 
-0.23 
 0.19 
-0.60 
 0.08 
 0.27 
or, its transpose, a 1x 8 row 
v1T = (-0.20, 0.40, 0.08, -0.23, 0.19, -0.60, 0.08, 0.27)T. 
 
Elements of vectors are referred to as their components. Operations of summa-

tion and subtraction are defined component-wise: 
 

e1=(-0.20, 0.23, -0.33,  -0.63,  0.36,  -0.22,  -0.14) 
           + 

e2=( 0.40, 0.05,     0,     -0.63,  0.36,  -0.22,  -0.14) 
 
     e1+e2=( 0.20, 0.28,  -0.33,  -1.26,  0.72,  -0.44,  -0.28) 
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and 

e1=(-0.20, 0.23, -0.33,  -0.63,  0.36,  -0.22,  -0.14) 
          − 

e2=( 0.40, 0.05,     0,     -0.63,  0.36,  -0.22,  -0.14) 
 
                     e1−e2=(- 0.60, 0.18, -0.33,     0,        0,        0,        0  ) 
 
The second important operation is multiplication of a vector by a real defined 

as multiplication of all components simultaneously: 
 

              3∗e1 = (-0.60, 0.69, -0.99,  -1.89,  1.08,  -0.66,  -0.42), 
 

             10∗e1=(-2.00, 2.30, -3.30,  -6.30,  3.60,  -2.20,  -1.40) 
 
To get some intuition, let us consider Cartesian plane representation of 2D vec-

tors obtained by cutting off all components of the rows except for the first two 
(Figure A1(a)). 

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

e1
e2

e1+e2
1.5*e1

a

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
b

 
Figure A1.1. Plane geometry representation of 2D vectors on (a) and eigenvec-

tor lines for symmetric matrix A (b). 
 
Figure A1.1 illustrates two geometric facts: (a) the sum of two vectors sits in 

the fourth node of the parallelogram formed by connecting 0 and the vectors; (b) 
given vector x, all vectors ax at a the constant a taking any value form the line 
through the origin 0 and x. 

 
The third important operation over vectors is inner product. The inner, or 

scalar, product is defined for every pair of vectors x and y of the same dimension 
and it is equal to – not a vector – but just a number  equal to the sum of  the 
products of the corresponding components and denoted by <x.y>. For example, for 
2D parts of vectors e1=(-0.20, 0.23) and e2=(0.40, 0.05), the inner product is 
<e1,e2>= −0.20*0.40 + 0.23*0.05 =-0.08+0.01=-0.07. A full computation 
<e1,e2>:= sum(e1.* e2) is below: 



 400 

e1= (-0.20, 0.23, -0.33,  -0.63,  0.36,  -0.22,  -0.14) 
                e2= ( 0.40, 0.05,     0,     -0.63,  0.36,  -0.22,  -0.14) 
                    e1*e2= (-0.08, 0.01,     0,      0.39,  0.13,   0.05,   0.02) 
<e1,e2>=sum(e1*e2)=   -0.08+ 0.01+   0+     0.39+ 0.13+  0.05+  0.02=0.52 
 
The inner product is a linear operation so that, for example, <e1,2*e1+3*e2> = 

2*<e1,e1> + 3*<e1,e2>, which can be proven in this case straightforwardly by 
computation. 

 
        
                                     x1=(x11,x12) 
 
                                       
                                      a               c 
                                                                                                                         
                                                                                        x2=(x21,x22) 
                                                             b 
        
              0=(0,0)             x11                                     x21         

x12

   
 
 
x22

 
Figure A1.2. Pythagoras’ theorem: the squared Euclidean distance between x1 

and x2 is d(x1,x2)= (x 2
11-x21) + (x12-x22)2. 

 
The inner square, that is, the product of a vector by itself, like <e1,e1>=-

0.20*(-0.20)+0.23*0.23 = 0.040+0.053=0.093, is the sum of squares of its 
components, which is the square length of the line connecting the origin 0 and the 
point on Cartesian plane such as Figure A1(a). This follows from the Pythagoras 
theorem illustrated on Figure A1.2. The theorem states that the square of 
hypothenuse’s length in any right-angled triangle is equal to the sum of squares of 
the sides’ lengths, c2 = a2 + b2. By extending this property to multidimensional 
points and vectors, the square root of the inner square <x,x> is referred to as the 
norm of x and denoted ||x||.  

 
This allows us to introduce Euclidean distance between any two vectors/points 

x and y as the norm of their difference, r(x,y)=||x – y||. In MatLab, this can be 
expressed as  r(x,y)= sqrt(sum((x-y).*(x-y)). For example, the distance between e1 
and e2 as rows of Table A1 can be computed as follows: 

 
e1−e2=  (- 0.60, 0.18, -0.33,  0, 0, 0, 0 ) 

(e1−e2).*(e1−e2)=  (  0.36,  0.03, 0.11,   0, 0, 0, 0 ) 
d(e1,e2)=sum((e1-e2).*(e1-e2))= 0.36 +0.03+0.11+ 0+0+0+0=.50 
r(e1,e2)=sqrt(d(e1,e2))=sqrt(.50)= 0.71 
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An important function in this computation is the squared Euclidean distance 
d(e1,e2) – this is the base of the least-squares approach in data analysis. 

 
Some other distances are popular too. Among them: Manhattan/City-block dis-

tance defined as m(x1,x2)= |x11-x21|+ |x12-x22|+…+|x1V- x2V| and Chebyshev/L∞  
distance defined as  c(x1,x2)=max(|x11-x21|, |x12-x22|, …, |x1V- x2V|). A popular ex-
ercise in getting intuition about the distances is drawing sets of points that are 
equidistant to origin 0: this is a circle in the case of Euclidean distance, rhomb in 
the case of city-block distance, and square in the case of Chebyshev distance. 

 
An important relation between (Euclidean squared) distance and inner product 

is this: 
d(x,y)= <x-y, x-y> = <x,x>+<y,y> − 2<x,y> 

 
It is especially simple if <x,y>=0: 

 
d(x,y)= <x,x> + <y,y>  

 
just like in Pythagoras’ theorem. This is why vectors/points x and y satisfying 
<x,y>=0 are referred to as orthogonal. This property underlies the decompositions 
of data scatter presented in the text. 

 
A1.2 Matrix algebra 
 
A general denotation for a matrix A is like this: 
 

A=  
11 12 1

1 2

V

N N NV

a a a

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
# % #

"
so that A has N rows and V columns which is denoted as N×V size, and a common 
element is aiv (i=1,…,N, v=1,…,V) – the row’s index always goes first. The trans-
pose AT of matrix A is defined by switching the rows and columns so that AT=(avi) 
is of V×N size: 

AT =  
11 21 1

1 2

V

N N VN

a a a

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
# % #

"
A matrix of N×V size is referred to as a square matrix if N=V. A square matrix 

A is referred to as symmetric if A= AT. The set of elements aii with coinciding in-
dices is referred to as diagonal of matrix A. The symmetry then literally is over the 
diagonal. 
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Operations of summation, subtraction and multiplication by a number are de-

fined for matrices component-wise exactly as it is for vectors. Matrices of differ-
ent sizes cannot be summed with or subtracted from each other. Here is an exam-
ple

             +     2           = 
   

onding components of b (hence is the rule of the size of b). Here is 
an example: 

                      

-0.14
3  1.30

3 2
0.42

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

 

he inner product of the corresponding row of A and b.  Using the 
same example, 

 

: 
 
  
                                          
  
 
 
An N×V matrix A can be multiplied by a column vector b of the size V×1 to 

produce an N×1 vector c=Ab– note that the number of components in b must be 
equal to the number of columns in A. This is just the sum of A columns weighted 
by the corresp

-0.20   0.23   0.19  -0.29  -   0.18 -0.35  -

 0.31  1.01 

-0.40   0.05   0.60  -0.42  0.80 -0.79 
 0.08   0.09  0.08  -0.10   0.24 -0.11 
-0.23  -0.15  0.27    0.58 

-0.20  0.23 -0.20    0.23 
0.40   0.05  0.40     0.05
0.08   0.09 2 0.08     0.09

⎜ ⎟

 -0.23  -0.15  -0.23   -0.15 -0.99⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
This definition can be reformulated using the inner product: in fact, each com-

ponent of Ab is t

-0.20  0.23 <(-0.20  0.23),   (3 2)> 
0.40   0.05 <(0.40   0.05),   (3 2)>
0.08   0.09 2 <(0.08   0.09),   (3 2)>

 -0.23  -0.15  <(-0.23 -0.15), (3 2)>  

-0.14
3  1.30

0.42
-0.99

⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
Based on this, matrix product AB is defined for matrices A of size N×V and B of 

size V×M as a matrix of size N×M whose columns are products of A and corre-
sp ing columns of B. Let us extend our example to this case: 

 
⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

ond

 

-0.20  0.23 
0.40   0.05
0.08   0.09 2  0

 -0.23  -0.15

-0.14  -0.20
3  1  1.30   0.40

0.42   0.08
-0.99  -0.23

⎛ ⎞
⎜ ⎟
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Given a square n×n matrix A and an n×1 vector b, the product c=Ab is again an 
n×1 vector. A vector b is of a special interest if c lies on the line drawn through 0 
and b, that is, if equation Ab=λb   

holds for some number λ. Such a number is referred to as an eigenvalue of A 
and b the corresponding eigenvector. The set of eigenvalues is not too large – the 
number of eigenvalues cannot exceed the matrix size n. If A is symmetric, then all 
its eigenvalues are real numbers and the eigenvectors corresponding to different 
eigenvalues are orthogonal to each other. In data analysis, it is usually assumed 
that all the eigenvalues are different indeed if the matrices are based on 
observations of quantitative variables because of random errors. Then the 
eigenvectors of A represent “inner” directions for Cartesian axes that follow the 
structure of A. Geometrically speaking, matrix multiplication transforms lines into 
lines. Then it would be correct to say that A transforms axes of the Cartesian space 
into its inner axes specified by the eigenvectors. Figure A1.1(b) represents the 
eigenvector-defined axes for matrix A=e+eT where e is the matrix composed of 

e1 and e2 considered above. 

, that is, finding a point that either minimizes f or maximizes it or both. 
Let cus izati ainty here proaches to 

nal intelli-

calculus.                                                      

two-dimensional row-vectors 

A2 Basic optimization 

Given a function f(x) for x∈X, it is natural to look for points x in X at which f(x) 
takes extreme values, ether maximum or minimum,  hence is the problem of opti-
mization

 us fo on minim on for cert . T  are two ap optimiza-
tion: one is the classical one the other of nature-inspired computatio
gence. 

The classical approach is informed by 

 

Figure A2.1. Graph of a typical multi-optimum function. 

This approach has been first developed for one-dimensional functions f(x) like 
the one whose graph is on Figure A2.1.  In the point of minimum, like A or D, or 

f 

A      B     C     D                x 
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maximum, like C, or change in the orientation of convexity,  like B, the first de-
rivative f′(x) which expresses the tangent of the curve f(x) in the point is 0 – this is 
what is referred to as the first-order necessary condition of minimum. It is possible 
to separate the minima from the rest by using the second order derivatives, but 
there is no way to tell one local minimum from the other unless reaching each of 
them, and to add to the misery, there is not much usually known of how to find 
them all or just the global minimum either. Sometimes the calculus is not of much 
help – a case in hand is the curve on Figure A2.1: its global minimum is at the 
ve

- μ f′(x), where μ is the 
step factor. The closer the point to the minimum, the smaller is the value of the de-

 
mi

on t
the derivative. For a function of  n-dimensional vectors,  f(x1,x2,…,xn), the gradient 

ry left point of the graph, and the first-order condition cannot help because it is 
valid only in interior points of the admissible set X.  

Yet to reach a local minimum satisfying the first-order minimum condition, a 
most universal method is of steepest descent.  This method relies on the derivative 
of the function in any given point. This shows the direction of the steepest ascent 
over the optimized function, so that the opposite direction makes it steepest de-
scent. Given an x and values f(x) and f′(x), this method finds another point xnew by 
subtracting the derivative scaled by a step factor, xnew =x 

rivative, thus the smaller the change. Of course, the method can converge to a
nimum point, not necessarily the global minimum.  

 
A2.2. New point is taken in the direction opposite to the tangent.   
 
The situation when x is multidimensional is even more complex. The mathe-

matics have made a good progress on the theory of optimization when only one 
minimum can exist – such is the case of so called convex or linear programming 
when both, function f(x) and set of admissible points X, are convex or linear. In the 
more general situation, though, the steepest descent frequently remains the only 
tool available, even in spite of the fact it finds a local minimum with no estimates 

he global one. Here, however, the concept of gradient is involved rather that of 

is an n-dimensional vector grad(f(x)) whose k-th component is partial derivative 

old   new                             x                 

k

y
x

∂
∂

 (k=1,…,n). The different term is used because there are examples of functions 

that have no derivatives at some points but still have gradients in those points. The 
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gradient, in n-dimensional space, shows direction of the steepest ascent. So, by 
taking the opposite direction, the process is supposed to go in the direction of 
steepest descent. That makes the method of steepest descent to work iterations. 
Ea oint in the direc-

on opposite to gradient: 

wh

ere is a bound on 
them from below, this would warrant that the sequence converges to a local mini-
mu

s – is used as an improvement device. The presence of the probabilistic 
component is considered an important device to warrant that the population does 
not stuck in a local optimum but rather covers the entire area of admissible solu-
tions. 

 

ch iteration takes in a point x=(x1,x2,…,xn) and outputs a new p
ti

 
                               x(new)=x(old) –μ∗grad(f(x(old))) 

 
ere μ is the step size. This new point is taken then by the next iteration. By 

changing the step-size from iteration to iteration, one may achieve a better rate of 
convergence. 

In the case when the set of arguments can be naturally partitioned in two or 
more parts such that the function is easy to minimize over each part taken sepa-
rately, an iterative process applies to involve steps optimizing each part at pre-
specified values of the other parts. This process is referred to as alternating mini-
mization. Consider that x=(y,z) so that f(x)=f(y,z) and, at any given y* and z*, the 
minimum of f(y*,z) with respect to z can be found easily, as well as minimum 
f(y,z*) over y. Then, starting from some y0 the alternating minimization process 
would produce a sequence y0, z1, y1, z2, z2,… in which zt is a minimizer of f(yt-1,z) 
and yt a minimizer of f(y,zt) at each t=1, 2,…. This sequence would provide for an 
ever decreasing sequence of values f(yt,zt). In a situation when th

m. If either y or z can have only a finite number of values, the process of alter-
nating minimization would converge in a finite number of steps. 

Q.A.1. What is gradient of function: (i) f(x1,x2)=x1
2+x2

2, (ii) f(x1,x2)=(x1-
1)2+3*(x2-4)2, (iii) f(z1,z2) = 3*z1

2 + (1-z2)4? A: (i)  (2x1, 2x2), (ii) [2*(x1-1),3*(x2-
4)], (iii) (6*z1, -4*(1-z2)3). 

In contrast to classical approaches, a nature inspired optimization approach 
does not try to reach a minimum by improving and updating a single solution 
point. Just the opposite. According to this approach, a population of admissible so-
lutions is thrown in randomly and all the attention is given not to an individual so-
lution but the population as a whole. Probabilistic rules are defined to generate the 
next generation of the population, usually in the same numbers, so that a process 
of evolution of the population from generation to generation  is defined and exe-
cuted computationally. Because of its probabilistic rules, each instance of the 
process may differ from the others. To warrant that the population improves in the 
process of evolution, a special “elite maintenance” policy is defined so that the 
elite – which is the best solution or a set of best solutions reached so far in the 
proces
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A3 Basic MatLab 

A.3.1 Introduction 

The working place within a processor’s memory is up to the user. A recommended 
option:  
- a folder with user-made MatLab codes, termed say Code and two or more sub-
folders, Data and Result, in which data and results, respectively, are to be stored. 
 
MatLab’s icon then is clicked on, after which MatLab opens as a three-part win-
dow, of which that on the right is working area referred to as Command Window, 
and the two parts on the left are auxiliary. MatLab can be brought in to the work-
ing folder/directory with traditional MSDOS or UNIX based commands such as: 
cd <Path_To_Working_Directory> in its Command Window. MatLab remembers 
then this path; and it is available to the user in a tiny window on top of the Com-
mand Window. 
 
MatLab is organized as a set of packages, each in its own directory, consisting of 
program files with extension .m each. Character ‘%’ symbolizes a comment for 
humans till the end of the line.   
 
Help can be invoked Windows-wise or within the working area. In the latter, 
"help" command allows seeing names of the packages as well as of individual 
program files; the latter are operations that can be executed within MatLab. Ex-
ample: Command “help” shows a bunch of packages, “matlab\datafun” among 
them; command “help datafun” displays a number of operations such as “max – 
largest component”; command “help max” explains the operation in detail. 

A3.2 Loading and storing files 

A numeric data file should be organized as an entity-to-feature data table: rows 
correspond to entities, columns to features (see studn.dat and studn.var). Such a 
data structure, with all entries numerical, is referred to as a 2D array, correspond-
ing to a matrix in mathematics; 1d arrays correspond to solitary entities or col-
umns (features) or rows (entity records). Array is a most important MatLab data 
format to hold numeric data. It works on the principle of a chess-board: its (i,k)-th 
entry arr(i,k) is the element in i-th row and k-th column. An Excel file has a simi-
lar structure but it is interlaced with strings. A 2D array's defining feature is that 
every row has the same number of digits.  
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To load such a file one may use a command from package "iofun". A simple one 
is "load" to load a numeric array, organized as described, into the current MatLab 
processor memory: 
 
>> arr=load('Data\stud.dat');  
%  symbol "%" is used for comments:  
%  MatLab interpreter doesn’t read lines beginning with “%”. 
% "arr" is a place in computer’s memory to put the data (variable);  
%  semicolon ";" should stand at the end of an instruction;  
%  if it does not, then the result will be printed to the screen,  
%  which can be very useful for the user for checking the process of computation 
%  studn.dat is a 100x8 file of 100 part-time students with 8 features: 
%  3 binary for Occupation; then Age, NumberChildren,  
%  and scores over three disciplines.  
% All feature names are in file studn.var stored in Data folder. 
 
An 1D array can be put into the workspace with a command like 
 
>> a=[3 4 7 0]; 
 
which is a 4×1 array, which can be transposed into a 1×4 array with a “transpose” 
command 
 
>> b=a′ 
 
Since no semicolon is put in the end, b will be displayed on screen as 
 

3 
4 
7 
0 

 
To get its 2d entry, a command 
 
>> c=b(2) 
 
can be utilized. Similarly, command 
 
>> d=arr(7,8) 
 
puts the value in arr’s 7th row and 8th column into workspace as variable d. 
  
If a numeric array in working memory is to be stored, one may use MatLab com-
mand “save” which admits a number of storage formats including internal .mat 
format (see more with “help save”). To store array X into file Result\good.res in 
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ASCII format (which is a text format covering characters in a standard keypad 
set), one may use command 
 
>> save Result\good.res X –ascii 
 
If you need to check, before saving, what files and variables are currently in the 
workspace, you may use the upper-left part of the MatLab window or command 
 
>> whos 
 
that produces the list on the screen.  
 
Names are handled as strings, with '   ' symbol. The entity/feature name sizes may 
vary, thus cannot be handled in the array format.  
 
To do this, another data format is used: the cell. Cells involve curly braces rather 
than round brackets  (parentheses) utilized for arrays. See the difference: arr(i)  is 
1D array arr’s i-th element, whereas brr{i} is cell brr’s i-th element, which can be 
not only a number or character, as in arrays, but also a string, an array, or even an-
other cell.  
 
There are other data structures as well in MatLab (video, audio, internet) which 
are not covered here. 
 
MatLab supports several data formats, including Excel which is popular among 
scientists and practitioners alike (see more in help iofun). An Excel file with ex-
tension .xls can be dealt with in MatLab by using commands xlsread ans xlswrite. 
Straightforward as they are, the user should not expect a comfortable switch be-
tween Excel and MatLab with these commands. Take a look, for example, onto 
Excel data file of several students in the table below. 
 
Table A3.1. An Excel spreadsheet with data of five students over four features (Age in 
years, Number of Children, Occupation [Information Technology IT or Business Admini-
stration BA or Other AN], and Mark over a range of 0-100%). 
 
 Feature Age #Children Occup CI_Mark 
 

Student   
John 35 0 IT 94  

 Peggy 28 2 BA 67 
 Fred 27 1 BA 85 
 Chris 28 0 OT 48 
 

Liz 25 0 IT 87  
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The xlsread command produces three data structures from an xls file: one for nu-
meric part, the other for text part, and the third for all data in the file. Specifically, 
if the table above is stored in Data subfolder as student.xls file, this works as fol-
lows: 
 
>> [nn,tt,rr]=xlsread(‘Data\student.xls’); 
% nn is array of numeric values, tt – is cell of text,  
% and rr is cell covering all the data in file 
 
to produce a numeric 5×4 array nn: 
 

35     0   NaN    94 
28     2   NaN    67 

    nn =  27     1   NaN    85 
      28     0   NaN    48 
      25     0   NaN    87  
 
and a text 8×5 cell tt: 
 
    'Feature' 'Age' '#Children' 'Occup'  'ML_Mark' 
     'Student' ''    ''          ''       '' 
     ''        ''    ''          ''       '' 
tt =  'John'    ''    ''          'IT'     '' 
     'Peggy'   ''    ''          'BA'     '' 
     'Fred'    ''    ''          'BA'     '' 
     'Chris'   ''    ''          'OT'     '' 
     'Liz'     ''    ''          'IT'     '' 
 
The full dataset is in 8×5 cell rr: 
 
    'Feature'    'Age'    '#Children'    'Occup'    'CI_Mark' 
    'Student'    [NaN]    [      NaN]    [  NaN]    [    NaN] 
    [    NaN]    [NaN]    [      NaN]    [  NaN]    [    NaN] 
rr = 'John'       [ 35]      [        0]           'IT'        [     94] 
    'Peggy'        [ 28]      [        2]          'BA'       [     67] 
    'Fred'           [ 27]      [        1]          'BA'       [     85] 
    'Chris'          [ 28]      [        0]          'OT'       [     48] 
    'Liz'             [ 25]       [        0]          'IT'        [     87] 
 
The NaN symbol applies in MatLab to undefined numeric values such as emerge 
from division by zero and the like. 
 
As one can see these are not exactly clean-cut structures to work with. The nu-
merical array nn contains an incomprehensible column of NaN values, and the text 
file tt mixes up names of students and features.  
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 A3.3 Using subsets of entities and  features 

If one wants working with only three of the six features, say "Age", "Children" 
and “OOProgramming_Score", one must put together their indices into a named 
1D array: 
 
>> ii=[4 5 7] 
% no semicolon in the end to display ii on screen as a row;  
 
Then commands to reduce the dataset and the set of feature names over ii columns 
can be like these:  
>> newa=arr(:,ii); %new data array 
>> newb=b(ii);   
 % newb is new feature set: to set it, one uses round braces rather than curly ones,  
% in spite of the fact that cells are involved here, not arrays  
 
A similar command makes it to a subset of entities. If, for instance, we want to 
limit our attention to only those students who received 60 or more at "OOPro-
gramming", we first find their indices with command "find": 
 
>> jj=find(arr(:,7)>=60); 
% jj is the set of the students defined in find() 
% arr(:,7) is the seventh column of arr 
 
Now we can apply "arr" to "jj": 
 
>> al=arr(jj,:); % partial data of better off students 
 
The size of the data file al can be found with command 
 
>>size(al) 
% note: no semicolon to see the size on the screen 
 
to produce a screen output: 
 
ans = 
 

55 8 
meaning that al consists of 55 rows and 8 columns. If one needs to maintain these 
in the workspace, use command 
   
>>[n,m]=size(al) 
that will put 55 into n and 8 into m. 
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Now we are ready to discern meaningful data from numerical array nn and text 
cell tt in workspace for Table 1 obtained on p. 3. As shown on that page, array 
nn’s meaningless column is 3. Thus we can remove it like this: 
>> [rnn,cnn]=size(nn); 
% thus, the number of columns is cnn 
 
>> vv=setdiff([1:cnn],3); 
% operation setdiff(x,y) removes from x all elements of array y occurring in x 
% [1:cnn] is an array of all integers from 1 to cnn inclusive, e.g., [1:4] is [1 2 3 4] 
% thus, vv consists of all indices but 3 
 
>> nnr=nn(:,vv); 
% this puts all nn, except for column 3, into nnr: 
 
     35     0    94 
     28     2    67 
 nnr =   27     1    85 
     28     0    48 
     25     0    87 
 
To create a cell containing the corresponding feature set, we need first to have a 
cell with all features. These constitute the final fragment of the first row of cell tt, 
without the very first string, “Feature”, as can be seen from the tt contents shown 
above. Thus command 
 
>> fe=tt(1,2:5); 
% only first row in tt concerning its four columns, 2 to 5, goes to cell fe 
 
leads to cell fe of size 1×4 containing of four features. To remove feature 3, we 
apply the array vv produced above: 
 
>>fer=fe(vv); 
 
Cell fer contains strings  'Age' ,   '#Children',   'ML_Mark' indexed by 1, 2 and 3 
and corresponding, in respect, to columns of array nnr. 

A4 MatLab program codes 

A4.1. Minkowski’s center: evolutionary algorithm 
 
%cm.m, computing Minkowski p-distance central point c of a series x 
%along with the average distance and its proportion in the sum 
  
function [c,d,pe]=cm(x,p) 
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n=length(x); 
lb=min(x); 
rb=max(x); %-----------------lb, rb are boundaries of the area (i)--- 
de=0; 
for ik=1:n 
    de=de+(abs(x(ik)))^p; 
end 
de=de/n;%---------------------------average p-th power of the data 
 
%-------------population setting (ii), setting the limit, iter, to iterations  
pp=15; %population size 
feas=(rb-lb)*rand(pp,1)+lb; %  generated population of p c values within the range 
flag=1; 
count=0; 
iter=5000; 
%----------  evaluation of the initially generated population (iii) ---- 
funp=0; 
for ii=1:pp 
    vv(ii)=mink(p,x,feas(ii)); 
end 
[funi, ini]=min(vv); 
soli=feas(ini) %initial best c value 
funi %initial error 
si=1;%0.5; %step of change 
%-------------evolution of the population (iv) ----------------- 
while flag==1 
    count=count+1; 
    feas=feas+si*randn(pp,1); % Gaussian mutation added with step si 
    for ii=1:pp 
        feas(ii)=max(lb, feas(ii)); 
        feas(ii,:)=min(rb,feas(ii));% keeping the population within the range 
        vec(ii)=mink(p,x,feas(ii)); %evaluation 
    end 
%-------------- elite maintenance (v) ---------------- 
    [fun, in]=min(vec); %best distance value 
    sol=feas(in,:);%corresponding c value 
    [wf,wi]=max(vec); 
    wun=feas(wi); %worst c 
    if wf>funi 
        feas(wi)=soli; 
        vec(wi)=funi; % changing the worst for the elite 
    end 
    if fun < funi 
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        soli=sol; 
        funi=fun; 
    end 
    if (count>=iter) 
        flag=0; 
    end 
   pe=funi/de; 
%------------ screen the results of every 1000th iteration      
    if rem(count,1000)==0 
        %funp=funi; 
        disp([soli pe]); 
    end 
end 
c=soli; 
d=funi; 
pe=d/de; 
  
return 
  
%--------computing the quality of ce, the average deviation in p-th power 
function dis=mink(p,x,ce) 
  
nn=length(x); 
dis=0; 
for ik=1:nn 
    dis=dis+(abs(x(ik)-ce))^p; 
end 
dis=dis/nn; 
  
return 

 
A4.2 Fitting power law: non-linear evolutionary and linearization 
  

% plan.m, power law analysis assuming the predictor x and target y are 
% available as variables in matlab 
% the power law is a function:      y=ax^b                  (1) 
% its linearized form:              log(y)=log(a)+b*log(x)  (2) 
  
  
function plan(x,y) 
  
%-----linear analysis of log(x) and log(y) 
  
for ii=1:length(x);xc(ii)=max(.05,x(ii));yc(ii)=max(0.05,y(ii));end; 
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%0.05 instead of 0 to make logarithms possible 
xll=log(xc); 
yll=log(yc); 
[all,bll,cll, rvll]=lr(xll,yll); 
  
%all the slope, bll the intercept of the linear regression 
%cll the correlation coefficient, rvll the residual variance of the linear regression 
yle=all*xll+bll;% linear-regression estimated yll 
cd=cll^2;%determination coefficient, it should be cd=1-rvll 
cd 
rvll 
%figure(1);plot(xll,yll,'k.',xll,yle,'rp'); 
  
%-----linearized: fitting equation (1) by first fitting equation(2) 
  
[al,bl, rl]=llr(x,y); 
% al the estimate of a, bl the estimate of b and  
% rl the proportion of the residual variance in the variance of y  
  
% ylr - the linearized rule estimate for the power law 
for ii=1:length(x);ylr(ii)=al*x(ii)^bl;end; 
  
%-------as is: fitting equation (1) by straightforwardly minimizing the 
%-------residual variance with an evolutionary algorithm 
  
[an,bn,f, rn]=nlr(x,y); 
% an the estimate of a, bn the estimate of b and  
% rn the proportion of the residual variance in the variance of y  
for ii=1:length(x);yn(ii)=an*x(ii)^bn;end; %estimated power law 
  
%-----------output: two-plot figure, real on the left, log on the right 
%figure(2); 
subplot(1,2,1); 
plot(x,y,'k.',x,ylr,'b.',x,yn,'r.');%data scatter with two estimated power laws,  
% blue-linearized, red- as is 
subplot(1,2,2);plot(xll,yll,'k.',xll,yle,'rp'); 
  
%-----------output: text file of the results 
saveplan('rep', cll, al, bl, rl, an, bn, rn,cd); 
  
return 
 
% llr.m,  fitting a nonlinear regression function y=ax^b 
% using linearization 
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% x is predictor, y is target, a,b -regression parameters to be fitted 
  
function [a,b, residvar]=llr(xt,yt); 
  
% regression is power law y=a*x^b as reflected  in the procedure 
% residvar is the average square error's proportion to the variance of y; 
% xt, yt are predictor and target 
  
%-----an elementary check of length compatibility-------- 
ll=length(xt); 
if ll~=length(yt) 
    disp('Something wrong is with the data'); 
    pause; 
end 
  
%--------- calculating a and b using the linearization 
for ii=1:ll;xc(ii)=max(.05,xt(ii));yc(ii)=max(0.05,yt(ii));end; 
%putting 0.05 instead of zero to make possible logarithms of the data 
xl=log(xc); %taking log of x and y 
yl=log(yc); 
  
[al,bl,dl]=lr(xl,yl); 
b=al; 
a=exp(bl); 
ab=[a b]; 
residvar=delta(ab,xt,yt)/var(yt,1); 
return  
   
%-------- computing the quality of the approximation y=a*(x^b) 
%which is the residual variance 
  
function esq=delta(tt,x,y)%tt=[a, b]; x predictor, y target 
a=tt(1); 
b=tt(2); 
esq=0; 
for ii=1:length(x) 
    yp(ii)=a*(x(ii)^b); %this power law function can be changed 
    esq=esq+(y(ii)-yp(ii))^2; 
end 
esq=esq/length(x); 
return; 
 
% nlr.m, evolutionary fitting of a nonlinear regression function y=f(x,a,b) 
% x is predictor, y is target, a,b -regression prameters to be fitted 
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function [a,b, funi,residvar]=nlr(xt,yt); 
  
% in this version the regression equation is power law y=a*x^b which is 
% reflected only in the subroutine 'delta' in the bottom for computing the 
% value of the average error squared; 
% funi is the average square error's best value; 
% residvar is its proportion to the variance of y; 
% xt, yt are predictor and target 
  
%-----an elementary check of length compatibility-------- 
ll=length(xt); 
if ll~=length(yt) 
    disp('Something is wrong with the data'); 
    pause; 
end 
%--------------- determine rectangle at which (a,b)-populations fluctuate  
[ab,bb]=ddr(xt,yt); 
  
lb=[ab(1) bb(1)]; 
rb=[ab(2) bb(2)]; 
lb 
rb 
disp('Hit ENTER if you wish to proceed. '); 
pause; 
%-------------organisation of the iterations, iter the limit to their number  
p=15; %population size 
for ii=1:p;feas(ii,:)=(rb-lb).*rand(1,2)+lb;end; %  generated population of p pairs coeffi-

cients within the range 
flag=1; 
count=0; 
iter=10000;%5000; 
%----------  evaluation of the initially generated population 
funp=0; 
for ii=1:p 
    vv(ii)=delta(feas(ii,:),xt,yt); 
end 
[funi, ini]=min(vv); 
soli=feas(ini,:) %initial coeffts 
funi %initial error 
si=1;%0.5; %step of change 
%-------------evolution of the population 
while flag==1 
    count=count+1; 
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    feas=feas+si*randn(p,2); %mutation added with step si 
    for ii=1:p 
        feas(ii,:)=max([lb;feas(ii,:)]); 
        feas(ii,:)=min([rb;feas(ii,:)]);% keeping the population within the range 
        vec(ii)=delta(feas(ii,:),xt,yt); %evaluation 
    end 
     
    [fun, in]=min(vec); %best approximation value 
    sol=feas(in,:);%corresponding  parameters 
    [wf,wi]=max(vec); 
    wun=feas(wi,:); %worst case 
    if wf>funi 
        feas(wi,:)=soli; 
        vec(wi)=funi;  
%changing the worst for the best of the previous generation 
    end 
    if fun < funi 
        soli=sol; 
        funi=fun; 
    end 
    if (count>=iter) 
        flag=0; 
    end 
 residvar=funi/var(yt,1);    
%------------ screen the results of every 500th iteration      
    if rem(count,500)==0 
        %funp=funi; 
        disp([soli residvar]); 
    end 
end 
a=soli(1); 
b=soli(2); 
return  
   
%-------- computing the quality of the approximation y==a*(x^b) 
function esq=delta(tt,x,y)%tt=[a, b]; x predictor, y target 
a=tt(1); 
b=tt(2); 
esq=0; 
for ii=1:length(x) 
    yp(ii)=a*(x(ii)^b); %this is a power law function 
    esq=esq+(y(ii)-yp(ii))^2; 
end 
esq=esq/length(x); %the average difference squared 
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return; 
 
 
% ddr.m, determination of the domain for power law y=a*x^b with b 
% restricted 
function [ab,bb]=ddr(x,y) 
n=length(x); 
bm=(log(y(1))-log(y(2)))/(log(x(1))-log(x(2))); 
am=y(1)/(x(1)^bm); 
ab=[am am]; 
bb=[bm bm]; 
%-------------finding extreme values for a and b using pairwise equations 
bs=0;as=0; bsq=0;asq=0; 
count=0; 
for ii=1:(n-1); 
    if min(x(ii),y(ii))>.25 
    for jj=(ii+1):n 
        if min(x(jj),y(jj))>.25 
        if (x(ii)/x(jj)<0.75)|(x(ii)/x(jj)>1.25) 
            count=count+1; 
            bt=(log(y(ii))-log(y(jj)))/(log(x(ii))-log(x(jj))); 
            aij=y(ii)/(x(ii)^bt); 
            aij=min(aij,100);%restriction 
            %if (aij>100) 
             %   disp([ii jj]); aij 
            %end; 
            bs=bs+bt; 
            bsq=bsq+bt*bt; 
            as=as+aij; 
            asq=asq+aij*aij; 
            if bt>bb(2) 
                bb(2)=bt; 
            end; 
            if bt<bb(1) 
                bb(1)=bt; 
            end; 
            if aij>ab(2) 
                ab(2)=aij; 
            end; 
            if aij<ab(1) 
                ab(1)=aij; 
            end; 
        end; 
        end; 
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    end; 
    end; 
end; 
as=as/count 
asq=asq/count; 
sas=sqrt(asq-as^2) 
bs=bs/count 
bsq=bsq/count; 
sbs=sqrt(bsq-bs^2) 
ab(1)=as-4*sas;ab(2)=as+4*sas; 
bb(1)=bs-4*sbs;bb(2)=bs+4*sbs; 
count 
return 
 
% saveplan.m, saving  results of the power-law analysis in plan.m 
  
function saveplan(file, cc, al, bl, rl, an, bn, rn,cd); 
  
ct =num2str(cc); 
first=['Results of the power-law analysis y=ax^b' ]; 
alla=[ 'On the level of logarithms, the correlation is  ' num2str(cc)]; 
alex=['Explained proportion of log(y)-variance is ' num2str(100*cd) '%']; 
nt=[ ]; 
lt1=['Linearized estimate parameter values are a= ' num2str(al) ', b= ' num2str(bl)]; 
lt2=['Explained proportion of y-variance is r= ' num2str(100*(1-rl)) '%' ]; 
nt1=['"As is" estimate parameter values are a= ' num2str(an) ', b= ' num2str(bn)]; 
nt2=['Explained proportion of y-variance is r= ' num2str(100*(1-rn)) '%']; 
alltext=strvcat(alla, lt1,lt2,nt1,nt2); 
  
oul=[' These are visualized on the Figure produced:'] 
our=[' The power-law estimates on the left, the logarithms, on the right']; 
    alltt=strvcat(alltext, oul, our); 
    alltt 
Filename=[ file '.out']; 
fid= fopen(Filename, 'at'); 
if fid~=-1 
    fprintf(fid, '%s\n', first); 
    fprintf(fid, '%s\n', '     '); 
    fprintf(fid, '%s\n', alla); 
    fprintf(fid, '%s\n', alex); 
    fprintf(fid, '%s\n', '     '); 
    fprintf(fid, '%s\n', lt1); 
    fprintf(fid, '%s\n', lt2); 
     fprintf(fid, '%s\n', '     '); 
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     fprintf(fid, '%s\n', nt1); 
    fprintf(fid, '%s\n', nt2); 
     fprintf(fid, '%s\n', '     '); 
     fprintf(fid, '%s\n', oul); 
    fprintf(fid, '%s\n', our); 
    fprintf(fid, '%s\n', '     '); 
    fprintf(fid, '%s\n', '     '); 
    fclose(fid); 
end; 
return 
  
A4.3 Training neuron network with one hidden layer 
 
% nnn.m for learning a set of features from a data set 
% with a neural net with a single hidden layer 
% with the symmetric sigmoid (hyperbolic tangent) in the hidden layer 
% and data normalisation to [-10,10] interval 
 
function [V,W, mede]=nnn(hiddenn,muin) 
 
% hiddenn - number of  neurons in the hidden layer 
% muin - the learning rate, should be of order of 0.0001 or less 
% V, W - wiring coefficients learnt 
% mede - vector of absolute values of errors in output features 
 
%--------------1.loading data ---------------------- 
da=load('Data\studn.dat'); %this is where the data file is put!!! 
% da=load('Data\iris.dat'); %this will be for iris data 
[n,m]=size(da); 
    
%-------2.normalizing to [-10,10] scale---------------------- 
mr=max(da); 
ml=min(da); 
ra=mr-ml; 
ba=mr+ml; 
tda=2*da-ones(n,1)*ba; 
dan=tda./(ones(n,1)*ra); 
dan=10*dan; 
%-------------3. preparing input and output target)-------- 
ip=[1:5];  % here is list of indexes of input features!!! 
%ip=[1:2];%only two input features in the case of iris 
ic=length(ip); 
op=[6:8];  % here is list of indexes of output features!!! 
%op=[3:4];% output iris features 
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oc=length(op); 
output=dan(:,op); %target features file 
input=dan(:,ip);  %input features file  
input(:,ic+1)=10;       %bias component 
%-----------------4.initialising the network --------------------- 
h=hiddenn;       %the number of hidden neurons!!! 
W=randn(ic+1,h); %initialising w weights 
V=randn(h,oc);   %initialising v weights 
W0=W; 
V0=V; 
count=0; %counter of epochs 
stopp=0; %stop-condition to change 
%pause(3); 
 
while(stopp==0) 
mede=zeros(1,oc); % mean errors after an epoch 
%----------------5. cycling over entities in a random order 
    ror=randperm(n); 
    for ii=1:n 
        x=input(ror(ii),:); %current instance's input 
        u=output(ror(ii),:);% current instance's output     
%---------------6. forward pass (to calculate response ru)------ 
        ow=x*W; 
        o1=1+exp(-ow); 
        oow=ones(1,h)./o1; 
        oow=2*oow-1;% symmetric sigmoid output of the hidden layer 
        ov=oow*V; %output of the output layer 
        err=u-ov; %the error 
        mede=mede+abs(err)/n; 
%------------ 7. error back-propagation-------------------------- 
        gV=-oow'*err;       % gradient vector for matrix V 
        t1=V*err'; % error propagated to the hidden layer 
        t2=(1-oow).*(1+oow)/2; %the derivative 
        t3=t2.*t1';% error multiplied by the th's derivative 
        gW=-x'*t3;  % gradient vector for matrix W 
%----------------8. weights update----------------------- 
        mu=muin; %the learning rate from the input!!! 
        V=V-mu*gV; 
        W=W-mu*gW; 
    end; 
%------------------. stop-condition -------------------------- 
    count=count+1; 
    ss=mean(mede); 
    if ss<0.01|count>=10000 
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        stopp=1; 
    end; 
    mede; 
    if rem(count,500)==0 
        count 
        mede 
    end 
end; 

 
A4.4 Building classification trees 
 

% clatree.m a program for building a decision tree over quantitative data,  
% according to a method, 'gini', 'chi' or 'ing' in 3.5 
% and specified stopping conditions: (a) number of entities,  
% (b) prevailing feature; Inputs: data matrix X, partition as cell s, method 
% variables untouched 
  
function Clusters=clatree(X, s, method) 
  
[n,mm]=size(X) 
TS=10; %cluster size threshold 
ee=0.8;%threshold to an s-class contents in a cluster 
tin=0; %threshold on the scoring function to be set 
switch method  
            case 'gini' 
                tin=0.03; 
            case 'chi' 
                tin=0.08; 
            case 'ing' 
                tin=0.15; 
            otherwise 
                disp('The method is wrong '); 
                pause(10); 
        end 
for ik=1:length(s); 
    ds(ik)=length(s{ik}); 
end 
ds=ds/sum(ds); 
%distribution of s 
ss=1; %cluster counter 
bb=ss; %the last cluster's index 
Clusters{ss,1}=[1:n];%entity set to cluster 
%Clusters{ss,2}=[1:m];%features to be used 
if max(ds)<ee 
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    Clusters{ss,2}=1; %should be split further 
else 
    Clusters{ss,2}=0; %should not be split further 
end 
Clusters{ss,3}=[0]; %parent's index 
Clusters{ss,4}=[]; %characteristics 
Clusters{ss,5}=ds;%distribution of s 
tt=0;%counter of clusters to split taking into account added clusters 
while ~(tt==ss), 
    for uu=(tt+1):ss 
        uu 
        realnum=Clusters{uu,1}; %cluster to be split 
        flag=Clusters{uu,2}; 
        if (flag==1) 
           ma=-1;%starting gain value 
           vv=0;%starting feature 
           yy=-1000;%starting value 
           for v0=1:mm 
               xs=X(realnum,v0); %variable to be used 
               [g,res,y]=msplit(xs,s,method);%producing split 
           disp(['var ' num2str(v0) ' val ' num2str(y) ' ' num2str(res)]) 
           % this line is to see action of each feature at each cluster 
               if res>=ma 
                   ma=res; 
                   yy=y; 
                   vv=v0; 
               end; 
           end 
           if ma>tin 
               xt=X(realnum,vv); 
               g{1}=realnum(find(xt<=yy)); 
               g{2}=realnum(find(xt>yy)); 
               l1=length(g{1}); 
               l2=length(g{2}); 
               if (l1*l2)==0 
                   Clusters{uu,2}=0; 
               else 
                   if (l1>TS & l2>TS) 
                       cc=clfil(g{1},s,ee,vv,uu,-1,yy,ma); 
                       for il=1:5 
                           Clusters{bb+1,il}=cc{il}; 
                       end 
                       cc=clfil(g{2},s,ee,vv,uu,1,yy,ma); 
                       for il=1:5 
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                           Clusters{bb+2,il}=cc{il}; 
                       end 
                       bb=bb+2; 
                   elseif l1>TS 
                       cc=clfil(g{1},s,ee,vv,uu,-1,yy,ma);   
                       for il=1:5 
                           Clusters{bb+1,il}=cc{il}; 
                       end 
                       bb=bb+1; 
                   elseif l2>TS 
                       cc=clfil(g{2},s,ee,vv,uu,1,yy,ma); 
                       for il=1:5 
                           Clusters{bb+1,il}=cc{il}; 
                       end 
                       bb=bb+1; 
                   end; 
                   Clusters{uu,2}=0; 
               end 
           end; 
        end; 
    end; 
  tt=ss; 
  ss=bb; 
end; 
  %savrdnew(file,Clusters,CC,B,yent); 
return 
%-------------- assigning a cluster object 
function cc=clfil(gg,s,ee,vv,uu,t,y,ma)  
%t=-1 for 1-split, 1 for 2-split 
 cc{1}=gg; 
 for ik=1:length(s) 
     ds(ik)=length(intersect(s{ik},gg)); 
 end; 
 ds=ds/sum(ds);%distribution of s in gg 
 if (max(ds)>ee) 
    cc{2}=0; 
 else 
    cc{2}=1; 
 end 
 cc{3}=uu; %parent 
 cc{4}=[vv t y ma]; 
 % variable, less/more than, split y, gain 
 cc{5}=ds; 
return              
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A5 Random samples 

A5.1  Short.dat is a dataset of random samples from three different distributions in 
Table A5.1. 

Table A5.1  
     8           20    1512 
     12      21      50 
     11      23      48 
     10      21     206 
      9              9      12 
      7            20     199 
     10      22      51 
     12      18      50 
      9            20     198 
     13      21     843 
      9              5      12 
     13      13       8 
     10      10       7 
     11      14       9 
      9            18      39 
      9            13      12 
      7            21      51 
     11      20      46 
     11      21      50 
      9            18      54 
      8            20    1391 
     10      19      49 
     10      19      41 
     13      24      35 
     12      23      45 
     10      13      11 
     12       9       9 
     10      21      49 
      7            10      10 
      8            17      52 
     12       8       8 
     11      20      48 
     12      17     199 
      8            11       9 
      8            11      13 
      9            20     978 
     12      17      51 
      9            20    6233 
     13      19      23 
     10      21      47 
     11      11       8 
     11      20     973 
     11       7      43 
     13      20     201 
      9            18     200 
     10      19      49 
      9            10       7 
     14      20      36 
      9            10       8 
     11      21     203 
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A5.2 A sample of 280 N(0,10) values, sorted 

 
-30.29     -12.48     -7.01     -2.99      1.76      5.58      10.35 
-25.57  -12.29   -6.94   -2.91   1.98  5.59 10.50 
-25.34  -12.27   -6.83   -2.83   1.98  5.63 10.94 
-23.79  -11.89   -6.79   -2.78   2.07  5.65 10.98 
-23.34  -11.61   -6.65   -2.75   2.08  5.65 11.08 
-22.38  -11.50   -6.64   -2.66   2.14  5.74 11.13 
-22.37  -11.33   -6.11   -2.66   2.14  5.74 11.64 
-21.78  -11.10   -6.02   -2.58   2.18  5.81 12.28 
-21.05  -10.78   -5.98   -2.52   2.21  5.82 12.33 
-20.89  -10.57   -5.87   -2.23   2.27  5.89 12.59 
-20.65  -10.52   -5.53   -2.07   2.28  6.13 12.79 
-19.10  -10.44   -5.35   -2.06   2.29  6.26 12.93 
-18.16  -10.13   -5.33   -1.91   2.36  6.29 13.15 
-17.95  -10.09   -5.22   -1.90   2.37  6.51 13.24 
-17.79  -10.08   -5.17   -1.74   2.56  6.55 13.42 
-17.58  -10.06   -4.91   -1.60   2.71  6.59 13.44 
-16.47  -9.79   -4.82   -1.51   2.79  6.59 13.48 
-16.43  -9.11   -4.62   -1.44   2.85  6.65 13.56 
-16.31  -9.08   -4.58   -1.42   2.91  7.00 13.99 
-16.19  -9.01   -4.53   -1.28   2.94  7.09 14.27 
-16.15  -8.95   -4.43   -1.26   2.98  7.16 14.69 
-16.14  -8.93   -4.26   -0.80   3.16  7.30 14.95 
-15.90  -8.71   -4.18   -0.79   3.21  7.58 15.35 
-15.89  -8.53   -4.17   -0.73   3.27  7.99 15.74 
-15.67  -8.49   -4.08   -0.50   3.27  8.34 15.82 
-15.56  -8.01   -4.01   -0.49   3.46  8.57 15.84 
-15.50  -7.98   -3.98   -0.23   3.66  8.58 15.99 
-15.04  -7.97   -3.95   -0.21   3.74  8.70 16.03 
-15.00  -7.75   -3.84   -0.08   3.80  8.85 16.84 
-14.91  -7.67   -3.78   -0.02   4.29  8.87 16.87 
-14.16  -7.48   -3.74   0.03   4.39  8.97 17.29 
-14.14  -7.46   -3.65   0.33   4.41  9.02 17.62 
-14.04  -7.44   -3.61   0.65   4.42  9.08 18.43 
-13.88  -7.37   -3.59   0.70   4.48  9.12 19.57 
-13.84  -7.37   -3.47   0.78   4.60  9.39 19.58 
-13.72  -7.35   -3.46   0.80   4.78  9.57 20.80 
-13.58  -7.27   -3.39   1.10   4.94  9.83 22.38 
-13.33  -7.24   -3.14   1.20   5.28 10.02 22.66 
-12.98  -7.20   -3.02   1.38   5.41 10.08 29.50 
-12.68  -7.03   -3.01   1.58   5.54 10.09 32.03 
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	877    7    7    22     4    15    60     0     4     4
	14   782   47     4    36    47    14    29     7    18 
	29    29  681     7    18     0    40    29   152    15
	149   22    4    732    4    11    30     7    41     0
	14    26   43    14   669    79    7      7   126    14 
	25    14    7    11    97   633    4    155    11    43
	269    4   21    21     7     0   667     0     4     7
	11    28   28    18    18    70   11   577    67    172
	25    29  111    46    82    11    21    82   550    43
	18     4    7    11     7    18    25    71    21   818
	This matrix leads to more reasonable results than other scoring matrices;  practitioners of protein alignment have selected this matrix as a standard. We consider BLOSUM62 as a similarity matrix and are interested in finding clusters of amino acids that tend to replace each other and looking at physic and chemical properties explaining the groupings.
	Table 0.8. Amino acid substitution rates: BLOSUM62 matrix of substitution scores between amino acids presented using 1-letter code (see Table 0.9 for decoding).
	Aa
	    A   B  C   D  E   F  G  H   I   K   L  M  N  P  Q   R   S   T  V  W  X  Y  Z
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	V
	W
	X
	Y
	Z
	       4 -2  0 -2 -1  -2  0 -2 -1 -1  -1 -1 -2 -1 -1  -1  1  0  0 -3  -1 -2 -1 
	-2  6 -3  6  2  -3 -1 -1 -3 -1  -4 -3  1 -1  0  -2  0 -1 -3 -4  -1 -3  2 
	0 -3  9 -3 -4  -2 -3 -3 -1 -3  -1 -1 -3 -3 -3  -3 -1 -1 -1 -2  -1 -2 -4 
	-2  6 -3  6  2  -3 -1 -1 -3 -1  -4 -3  1 -1  0  -2  0 -1 -3 -4  -1 -3  2 
	-1  2 -4  2  5  -3 -2  0 -3  1  -3 -2  0 -1  2   0  0 -1 -2 -3  -1 -2  5 
	-2 -3 -2 -3 -3   6 -3 -1  0 -3   0  0 -3 -4 -3  -3 -2 -2 -1  1  -1  3 -3 
	0 -1 -3 -1 -2  -3  6 -2 -4 -2  -4 -3  0 -2 -2  -2  0 -2 -3 -2  -1 -3 -2 
	-2 -1 -3 -1  0  -1 -2  8 -3 -1  -3 -2  1 -2  0   0 -1 -2 -3 -2  -1  2  0 
	-1 -3 -1 -3 -3   0 -4 -3  4 -3   2  1 -3 -3 -3  -3 -2 -1  3 -3  -1 -1 -3 
	-1 -1 -3 -1  1  -3 -2 -1 -3  5  -2 -1  0 -1  1   2  0 -1 -2 -3  -1 -2  1 
	-1 -4 -1 -4 -3   0 -4 -3  2 -2   4  2 -3 -3 -2  -2 -2 -1  1 -2  -1 -1 -3 
	-1 -3 -1 -3 -2   0 -3 -2  1 -1   2  5 -2 -2  0  -1 -1 -1  1 -1  -1 -1 -2 
	-2  1 -3  1  0  -3  0  1 -3  0  -3 -2  6 -2  0   0  1  0 -3 -4  -1 -2  0 
	-1 -1 -3 -1 -1  -4 -2 -2 -3 -1  -3 -2 -2  7 -1  -2 -1 -1 -2 -4  -1 -3 -1 
	-1  0 -3  0  2  -3 -2  0 -3  1  -2  0  0 -1  5   1  0 -1 -2 -2  -1 -1  2 
	-1 -2 -3 -2  0  -3 -2  0 -3  2  -2 -1  0 -2  1   5 -1 -1 -3 -3  -1 -2  0 
	1  0 -1  0  0  -2  0 -1 -2  0  -2 -1  1 -1  0  -1  4  1 -2 -3  -1 -2  0 
	0 -1 -1 -1 -1  -2 -2 -2 -1 -1  -1 -1  0 -1 -1  -1  1  5  0 -2  -1 -2 -1 
	0 -3 -1 -3 -2  -1 -3 -3  3 -2   1  1 -3 -2 -2  -3 -2  0  4 -3  -1 -1 -2 
	-3 -4 -2 -4 -3   1 -2 -2 -3 -3  -2 -1 -4 -4 -2  -3 -3 -2 -3 11  -1  2 -3 
	-1 -1 -1 -1 -1  -1 -1 -1 -1 -1  -1 -1 -1 -1 -1  -1 -1 -1 -1 -1  -1 -1 -1 
	-2 -3 -2 -3 -2   3 -3  2 -1 -2  -1 -1 -2 -3 -1  -2 -2 -2 -1  2  -1  7 -2
	-1  2 -4  2  5  -3 -2  0 -3  1  -3 -2  0 -1  2   0  0 -1 -2 -3  -1 -2  5
	Table 0.9. Amino acids and their encoding as 3-letter and 1-letter symbolics from web-site http://icb.med.cornell.edu/education/courses/introtobio (accessed 8 December 2009). 
	J. Han, M. Kamber (2010) Data Mining: Concepts and Techniques, 3d Edition, Morgan Kaufmann Publishers.

	1 1D analysis: Summarization and Visualization of a Single Feature 
	Figure 1.2. With just two bins on the range, the divider is mid-range.
	In those cases when the probability distributions are unknown or inapplicable, intervals and fuzzy sets are used to reflect uncertainty in data. When dealing with complex systems, feature values cannot be determined precisely, even for such a relatively stable and homogeneous dimension as the population resident in a country. The so-called “linguistic variables” (Zadeh 1970) express imprecise categories and concepts in terms of appropriate quantitative measures, such as the concept of “normal temperature” of an individual – a body temperature from about 36.0 to 36.9 Celsius or “normal weight” –  the Body Mass Index BMI (the ratio of the weight, in kg, to the height, in meters, squared) somewhat between 20 and 25. (Those with BMI > 25 are considered overweight or even obese if BMI>30; and those with BMI < 20, underweight). In these examples, the natural boundaries of a category are expressed as an interval.
	By putting these optimal a and b into (2.3), one can express the minimum criterion value as
	Figure 2.11. Scatter plot of Sepal length and Sepal width from Iris data set (Table 0.3), as a whole on the left and taxon-wise on the right. Taxon 1 is presented by circles, taxon 2 by triangles, and taxon 3 by dots.
	A simple statistical model extending that for the mean will be referred to as tabular regression. The tabular regression of quantitative y over categorical x is a table comprising three columns corresponding to:





	Decision trees are very popular because they are simple to understand, use, and interpret. However, one should properly use them, because the decision rules produced with them can be overly simplistic and frequently imprecise. Their effectiveness much depends on the features and samples selected for the analysis. As always in learning correlation, a simpler tree is preferred to a complex one because of the over-fitting problem: a complex tree is more likely reflect noise in the data rather than the true tendencies.
	J. Han, M. Kamber (2010) Data Mining: Concepts and Techniques, 3d Edition, Morgan Kaufmann Publishers.
	Property 3. Pythagorean decomposition of the data scatter T(Y) relating the least squares criterion (4.11) and the singular value holds as follows:
	A nature inspired algorithm proceeds as a sequence of steps of evolution for a population of possible solutions, that is, clusterings represented by specific data structures. A K-Means clustering comprises two items: a partition S of the entity set I in K clusters and a set of clusters’ K centroids c={c1, c2,…, cK}. Typically, only one of them is carried out in a nature-inspired algorithm. The other is easily recovered according to K-Means rules. Given a partition S, centroids ck are found as vectors of within cluster means. Given a set of centroids, each cluster Sk is de- fined as the set of points nearest to its centroid ck, according to the Minimum distance rule (k=1, 2, …, K). Respectively, the following two representations are most popular in nature inspired algorithms: 
	 (i)   Partition as a string, and 
	(ii)  Centroids as a string.
	A computational shortcoming of the GA algorithm is that the length of the chromosomes is the size of the entity set N, which may run in millions in contemporary applications. Can this be overcome? Sure, by using centroid not partition strings to represent a clustering. Centroid string sizes depend on the number of features and number of clusters, not the number of entities. Another advantage of centroid strings is in the mutation process. Rather than an abrupt swap between literals, they can be changed softly, in a quantitative manner by adding or subtracting a small change. This is utilized in evolutionary and particle swarm algorithms. 
	C5.1.3.3  Particle swarm optimization for K-Means: Computation


	Stimulus
	                          Response
	   1       2       3      4       5     6      7       8      9     0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	 877     11    18    86      9    20   165      6    15    11
	    11  782    38    13    31    31       9    29    18    11
	    18    38   681     6    31      4     31    29  132    11
	    86    13      6  732      9     11    26    13    44      6
	      9    31    31      9   669    88      7    13  104    11
	    20    31      4    11     88  633      2  113    11    31
	  165      9    31    26       7      2  667     6     13    16
	      6    29    29    13     13  113      6  577    75  122
	    15    18   132   44   104    11    13    75  550    32
	    11    11     11     6     11    31    16  122    32  818
	S.K. Tasoulis, D.K. Tasoulis and V.P. Plagianakos (2010) Enhancing principal direction divisive clustering,  Pattern Recognition, 43, 3391-3411.

	1      2       3      4     5       6     7      8       9       0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	  0    21    36   171    18    40   329    11    29    22
	 21     0    76     26    62    61     18    57    36    22
	 36   76      0     11    61      7     61    57   263    22
	171   26    11      0    18    22     51    25     87    11
	  18   62    61    18      0  176     14    25   208    21
	  40   61     7     22  176      0       4  225     22    61
	329   18    61    51    14      4       0     11    25    32
	 11    57    57    25    25   225    11      0   149  243
	 29    36  263    87  208     22    25   149      0    64   
	 22    22    22    11    21     61    32   243    64      0
	677 379  594  422  603   618  545   803  883  498
	2     3     4     5     6     7     8     9     0
	1
	2
	3
	4
	5
	6
	7
	8
	21    36   171    18    40   329    11    29    22
	    76    26    62    61    18    57    36    22
	          11    61     7    61    57   263    22
	                18    22    51    25    87    11
	                     176    14    25   208    21
	                             4   225    22    61
	                                  11    25    32
	                                       149   243
	                                              64
	Case study 7.2. Summary clusters at ordinary network data
	Worked example 7.2. Similarity clusters at affinity data


	AddRem(i) algorithm
	Worked example 7.3. Spectral clusters for Confusion dataset
	Worked example 7.4. Spectral clusters for Cockroach network
	Worked example 7.5. Spectral clustering of affinity data
	Worked example 7.6. Normalized cut for Company data


	Worked example 7.8. Failure of spectral clustering at Cockroach network
	Case study 7.3. Circular cluster exposed by Lapin transformation
	Worked example 7.9. Additive clusters at Confusion dataset
	Project 7.1. Analysis of structure of amino acid substitution rates
	                            A=(1Sm+(2Po+(3Hy+(4Al+(5Ar+(0      
	If, however, we rewrite the model by moving the intercept to the left as
	To fit the model (7.16), we minimize the square error criterion
	AddRemAdd(j) algorithm
	ADN algorithm
	ADO algorithm






	The classical approach is informed by calculus.                                                                
	Figure A2.1. Graph of a typical multi-optimum function.
	This approach has been first developed for one-dimensional functions f(x) like the one whose graph is on Figure A2.1.  In the point of minimum, like A or D, or maximum, like C, or change in the orientation of convexity,  like B, the first derivative f′(x) which expresses the tangent of the curve f(x) in the point is 0 – this is what is referred to as the first-order necessary condition of minimum. It is possible to separate the minima from the rest by using the second order derivatives, but there is no way to tell one local minimum from the other unless reaching each of them, and to add to the misery, there is not much usually known of how to find them all or just the global minimum either. Sometimes the calculus is not of much help – a case in hand is the curve on Figure A2.1: its global minimum is at the very left point of the graph, and the first-order condition cannot help because it is valid only in interior points of the admissible set X. 
	Yet to reach a local minimum satisfying the first-order minimum condition, a most universal method is of steepest descent.  This method relies on the derivative of the function in any given point. This shows the direction of the steepest ascent over the optimized function, so that the opposite direction makes it steepest descent. Given an x and values f(x) and f′(x), this method finds another point xnew by subtracting the derivative scaled by a step factor, xnew =x - ( f′(x), where ( is the step factor. The closer the point to the minimum, the smaller is the value of the derivative, thus the smaller the change. Of course, the method can converge to a minimum point, not necessarily the global minimum. 
	The situation when x is multidimensional is even more complex. The mathematics have made a good progress on the theory of optimization when only one minimum can exist – such is the case of so called convex or linear programming when both, function f(x) and set of admissible points X, are convex or linear. In the more general situation, though, the steepest descent frequently remains the only tool available, even in spite of the fact it finds a local minimum with no estimates on the global one. Here, however, the concept of gradient is involved rather that of the derivative. For a function of  n-dimensional vectors,  f(x1,x2,…,xn), the gradient is an n-dimensional vector grad(f(x)) whose k-th component is partial derivative   (k=1,…,n). The different term is used because there are examples of functions that have no derivatives at some points but still have gradients in those points. The gradient, in n-dimensional space, shows direction of the steepest ascent. So, by taking the opposite direction, the process is supposed to go in the direction of steepest descent. That makes the method of steepest descent to work iterations. Each iteration takes in a point x=(x1,x2,…,xn) and outputs a new point in the direction opposite to gradient:
	                               x(new)=x(old) –((grad(f(x(old)))
	In the case when the set of arguments can be naturally partitioned in two or more parts such that the function is easy to minimize over each part taken separately, an iterative process applies to involve steps optimizing each part at pre-specified values of the other parts. This process is referred to as alternating minimization. Consider that x=(y,z) so that f(x)=f(y,z) and, at any given y* and z*, the minimum of f(y*,z) with respect to z can be found easily, as well as minimum f(y,z*) over y. Then, starting from some y0 the alternating minimization process would produce a sequence y0, z1, y1, z2, z2,… in which zt is a minimizer of f(yt-1,z) and yt a minimizer of f(y,zt) at each t=1, 2,…. This sequence would provide for an ever decreasing sequence of values f(yt,zt). In a situation when there is a bound on them from below, this would warrant that the sequence converges to a local minimum. If either y or z can have only a finite number of values, the process of alternating minimization would converge in a finite number of steps.

